Norme matricielleEn mathématiques, une norme matricielle est un cas particulier de norme vectorielle, sur un espace de matrices. Dans ce qui suit, K désigne le corps des réels ou des complexes. Certains auteurs définissent une norme matricielle comme étant simplement une norme sur un espace vectoriel M(K) de matrices à m lignes et n colonnes à coefficients dans K. Pour d'autres, une norme matricielle est seulement définie sur une algèbre M(K) de matrices carrées et est une norme d'algèbre, c'est-à-dire qu'elle est de plus sous-multiplicative.
Quaternions et rotation dans l'espaceLes quaternions unitaires fournissent une notation mathématique commode pour représenter l'orientation et la rotation d'objets en trois dimensions. Comparés aux angles d'Euler, ils sont plus simples à composer et évitent le problème du blocage de cardan. Comparés aux matrices de rotations, ils sont plus stables numériquement et peuvent se révéler plus efficaces. Les quaternions ont été adoptés dans des applications en infographie, robotique, navigation, dynamique moléculaire et en mécanique spatiale des satellites.
Complexité de KolmogorovEn informatique théorique et en mathématiques, plus précisément en théorie de l'information, la complexité de Kolmogorov, ou complexité aléatoire, ou complexité algorithmique d'un objet — nombre, , chaîne de caractères — est la taille du plus petit algorithme (dans un certain langage de programmation fixé) qui engendre cet objet. Elle est nommée d'après le mathématicien Andreï Kolmogorov, qui publia sur le sujet dès 1963. Elle est aussi parfois nommée complexité de Kolmogorov-Solomonoff.
Application linéaireEn mathématiques, une application linéaire (aussi appelée opérateur linéaire ou transformation linéaire) est une application entre deux espaces vectoriels qui respecte l'addition des vecteurs et la multiplication scalaire, et préserve ainsi plus généralement les combinaisons linéaires. L’expression peut s’utiliser aussi pour un morphisme entre deux modules sur un anneau, avec une présentation semblable en dehors des notions de base et de dimension. Cette notion étend celle de fonction linéaire en analyse réelle à des espaces vectoriels plus généraux.
Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
ComplexitéLa complexité caractérise le comportement d'un système dont les composants interagissent localement et de façon non linéaire, ce qui se traduit par un comportement difficilement prédictible. La complexité peut donc caractériser un système "composé d'un grand nombre d'éléments interagissant sans coordination centrale, sans plan établi par un architecte, et menant spontanément à l'émergence de structures complexes" (Alain Barrat, directeur de recherche au Centre de physique théorique de Marseille); mais aussi caractériser des systèmes composés de peu d'éléments (voir le chaos déterministe).
Imagerie à grande gamme dynamiqueL'imagerie à grande gamme dynamique (ou imagerie large-gamme) (high-dynamic-range imaging ou HDRI) regroupe un ensemble de techniques numériques permettant de présenter une image fixe ou animée d'une scène qui présente, dans ses diverses parties, des niveaux très différents de luminosité. Une se constitue à partir de pixels auxquels est associé un triplet de valeurs qui en indique la luminosité et la couleur. Le rendu à grande dynamique concerne des fichiers d'origine où les pixels ont plus de valeurs possibles que les écrans ou imprimantes du rendu.
Disease vectorIn epidemiology, a disease vector is any living agent that carries and transmits an infectious pathogen to another living organism; agents regarded as vectors are organisms, such as parasites or microbes. The first major discovery of a disease vector came from Ronald Ross in 1897, who discovered the malaria pathogen when he dissected a mosquito. Arthropods form a major group of pathogen vectors with mosquitoes, flies, sand flies, lice, fleas, ticks, and mites transmitting a huge number of pathogens.
Algorithmically random sequenceIntuitively, an algorithmically random sequence (or random sequence) is a sequence of binary digits that appears random to any algorithm running on a (prefix-free or not) universal Turing machine. The notion can be applied analogously to sequences on any finite alphabet (e.g. decimal digits). Random sequences are key objects of study in algorithmic information theory. As different types of algorithms are sometimes considered, ranging from algorithms with specific bounds on their running time to algorithms which may ask questions of an oracle machine, there are different notions of randomness.
Traffic generation modelA traffic generation model is a stochastic model of the traffic flows or data sources in a communication network, for example a cellular network or a computer network. A packet generation model is a traffic generation model of the packet flows or data sources in a packet-switched network. For example, a web traffic model is a model of the data that is sent or received by a user's web-browser. These models are useful during the development of telecommunication technologies, in view to analyse the performance and capacity of various protocols, algorithms and network topologies .