FerroélectricitéOn appelle ferroélectricité la propriété selon laquelle un matériau possède une polarisation électrique à l'état spontané, polarisation qui peut être renversée par l'application d'un champ électrique extérieur. La signature d'un matériau ferroélectrique est le cycle d'hystérésis de la polarisation en fonction du champ électrique appliqué. Le préfixe ferro- fut emprunté au ferromagnétisme par analogie.
Température de CurieLa température de Curie (ou point de Curie) d'un matériau ferromagnétique ou ferrimagnétique est la température T à laquelle le matériau perd son aimantation permanente. Le matériau devient alors paramagnétique. Ce phénomène a été découvert par le physicien français Pierre Curie en 1895. L’aimantation permanente est causée par l’alignement des moments magnétiques. La susceptibilité magnétique au-dessus de la température de Curie peut alors être calculée à partir de la loi de Curie-Weiss, qui dérive de la loi de Curie.
Titanate de baryumLe titanate de baryum est un composé chimique de formule . Ce matériau céramique se présente sous la forme d'un solide blanc ferroélectrique à hystérésis prononcée ayant également un effet photoréfractif et un effet piézoélectrique. Il trouve des applications notamment dans les condensateurs, les transducteurs électromécaniques, les thermistances CTP et en optique non linéaire. Il existe également sous forme naturelle dans un minéral rare appelé baryopérovskite.
Magnetic domainA magnetic domain is a region within a magnetic material in which the magnetization is in a uniform direction. This means that the individual magnetic moments of the atoms are aligned with one another and they point in the same direction. When cooled below a temperature called the Curie temperature, the magnetization of a piece of ferromagnetic material spontaneously divides into many small regions called magnetic domains. The magnetization within each domain points in a uniform direction, but the magnetization of different domains may point in different directions.
PiézoélectricitéLa piézoélectricité (du grec πιέζειν, piézein, presser, appuyer) est la propriété que possèdent certains matériaux de se polariser électriquement sous l’action d’une contrainte mécanique et réciproquement de se déformer lorsqu’on leur applique un champ électrique. Les deux effets sont indissociables. Le premier est appelé effet piézoélectrique direct ; le second effet piézoélectrique inverse. Cette propriété trouve un très grand nombre d’applications dans l’industrie et la vie quotidienne.
Paroi magnétiqueDans un matériau ferromagnétique, une paroi magnétique ou paroi de domaine est une zone de transition entre deux domaines d'aimantation différentes ou domaines de Weiss. En magnétisme, on utilise le terme paroi pour décrire l'interface entre deux domaines magnétiques (ou domaines de Weiss). Chaque domaine est orienté selon un axe d'anisotropie du cristal dans lequel il est présent. La paroi de domaine marque le passage d'une zone aimantée à une autre.
Loi de CurieEn physique du solide, la loi de Curie énonce que la susceptibilité magnétique d'un matériau paramagnétique est inversement proportionnelle à la température . On l'écrit : où est une constante parfois appelée constante de Curie. Cette loi doit son nom à Pierre Curie qui l'a découverte expérimentalement à la fin du . Cette loi peut être démontrée par la physique statistique en considérant un système composé d'un grand nombre de moments magnétiques indépendants pouvant s'orienter parallèlement ou antiparallèlement à un champ magnétique appliqué .
Single domain (magnetic)In magnetism, single domain refers to the state of a ferromagnet (in the broader meaning of the term that includes ferrimagnetism) in which the magnetization does not vary across the magnet. A magnetic particle that stays in a single domain state for all magnetic fields is called a single domain particle (but other definitions are possible; see below). Such particles are very small (generally below a micrometre in diameter). They are also very important in a lot of applications because they have a high coercivity.
Pérovskite (structure)La pérovskite, du nom du minéralogiste russe L. A. Perovski, est une structure cristalline commune à de nombreux oxydes. Ce nom a d'abord désigné le titanate de calcium de formule CaTiO, avant d'être étendu à l'ensemble des oxydes de formule générale ABO présentant la même structure. Les pérovskites présentent un grand intérêt en raison de la très grande variété de propriétés que présentent ces matériaux selon le choix des éléments A et B : ferroélasticité (par exemple ), ferroélectricité (par exemple ), antiferroélectricité (par exemple PbZrO), ferromagnétisme (par exemple YTiO), antiferromagnétisme (LaTiO) La structure pérovskite de plus haute symétrie est une structure de symétrie cubique.
Point critique (thermodynamique)vignette| Le point critique d'un corps pur est le point du diagramme température-pression, généralement noté C, où s'arrête la courbe d'équilibre liquide-gaz. La température T et la pression P du point critique sont appelées température critique et pression critique du corps pur. Le volume molaire et la masse volumique du corps pur à ces température et pression (V et ρ) sont appelés volume critique et masse volumique critique (plus souvent, mais improprement, densité critique).