Température de CurieLa température de Curie (ou point de Curie) d'un matériau ferromagnétique ou ferrimagnétique est la température T à laquelle le matériau perd son aimantation permanente. Le matériau devient alors paramagnétique. Ce phénomène a été découvert par le physicien français Pierre Curie en 1895. L’aimantation permanente est causée par l’alignement des moments magnétiques. La susceptibilité magnétique au-dessus de la température de Curie peut alors être calculée à partir de la loi de Curie-Weiss, qui dérive de la loi de Curie.
Point critique (thermodynamique)vignette| Le point critique d'un corps pur est le point du diagramme température-pression, généralement noté C, où s'arrête la courbe d'équilibre liquide-gaz. La température T et la pression P du point critique sont appelées température critique et pression critique du corps pur. Le volume molaire et la masse volumique du corps pur à ces température et pression (V et ρ) sont appelés volume critique et masse volumique critique (plus souvent, mais improprement, densité critique).
Loi de CurieEn physique du solide, la loi de Curie énonce que la susceptibilité magnétique d'un matériau paramagnétique est inversement proportionnelle à la température . On l'écrit : où est une constante parfois appelée constante de Curie. Cette loi doit son nom à Pierre Curie qui l'a découverte expérimentalement à la fin du . Cette loi peut être démontrée par la physique statistique en considérant un système composé d'un grand nombre de moments magnétiques indépendants pouvant s'orienter parallèlement ou antiparallèlement à un champ magnétique appliqué .
ParamagnétismeLe paramagnétisme désigne en magnétisme le comportement d'un milieu matériel qui ne possède pas d'aimantation spontanée mais qui, sous l'effet d'un champ magnétique extérieur, acquiert une aimantation orientée dans le même sens que le champ magnétique appliqué. Un matériau paramagnétique possède une susceptibilité magnétique de valeur positive (contrairement aux matériaux diamagnétiques). Cette grandeur sans unité est en général assez faible (dans une gamme allant de à ).
Théorie du champ moléculaireLe champ moléculaire est un modèle développé par Pierre Weiss dans l’objectif de fonder une théorie du comportement des ferromagnétiques. Cette théorie est ensuite étendue à d'autres matériaux magnétiques. Certains matériaux, en particulier les ferromagnétiques, possèdent une aimantation spontanée en l'absence de tout champ magnétique externe. Ce modèle explique l'existence de cette aimantation par l'action d'un champ interne nommé champ moléculaire.
Décomposition spinodaleSpinodal decomposition is a mechanism by which a single thermodynamic phase spontaneously separates into two phases (without nucleation). Decomposition occurs when there is no thermodynamic barrier to phase separation. As a result, phase separation via decomposition does not require the nucleation events resulting from thermodynamic fluctuations, which normally trigger phase separation. Spinodal decomposition is observed when mixtures of metals or polymers separate into two co-existing phases, each rich in one species and poor in the other.
Condition aux limites de RobinEn mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855-1897), qui a travaillé dans le domaine de la thermodynamique. Elle est également appelée condition aux limites de Fourier. Imposée à une équation différentielle ordinaire ou à une équation aux dérivées partielles, il s'agit d'une relation linéaire entre les valeurs de la fonction et les valeurs de la dérivée de la fonction sur le bord du domaine.
Condition aux limites de DirichletEn mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Condition aux limites de NeumannEn mathématiques, une condition aux limites de Neumann (nommée d'après Carl Neumann) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs des dérivées que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Neumann sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Problème aux limitesEn analyse, un problème aux limites est constitué d'une équation différentielle (ou plus généralement aux dérivées partielles) dont on recherche une solution prenant de plus des valeurs imposées en des limites du domaine de résolution. Contrairement au problème analogue dit de Cauchy, où une ou plusieurs conditions en un même endroit sont imposées (typiquement la valeur de la solution et de ses dérivées successives en un point), auquel le théorème de Cauchy-Lipschitz apporte une réponse générale, les problèmes aux limites sont souvent des problèmes difficiles, et dont la résolution peut à chaque fois conduire à des considérations différentes.