Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Prévision numérique du tempsLa prévision numérique du temps (PNT) est une application de la météorologie et de l'informatique. Elle repose sur le choix d'équations mathématiques offrant une proche approximation du comportement de l'atmosphère réelle. Ces équations sont ensuite résolues, à l'aide d'un ordinateur, pour obtenir une simulation accélérée des états futurs de l'atmosphère. Le logiciel mettant en œuvre cette simulation est appelé un modèle de prévision numérique du temps.
Probabilistic numericsProbabilistic numerics is an active field of study at the intersection of applied mathematics, statistics, and machine learning centering on the concept of uncertainty in computation. In probabilistic numerics, tasks in numerical analysis such as finding numerical solutions for integration, linear algebra, optimization and simulation and differential equations are seen as problems of statistical, probabilistic, or Bayesian inference.
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Espace poreux du solL'espace poreux du sol contient les phases liquide et gazeuse du sol, c'est-à-dire tout, sauf la phase solide qui contient principalement des minéraux de différentes tailles ainsi que des composés organiques. Afin de mieux comprendre la porosité, une série d'équations a été utilisée pour exprimer les interactions quantitatives entre les trois phases du sol. Les macropores ou fractures jouent un rôle majeur dans les taux d'infiltration dans de nombreux sols ainsi que dans les modèles d'écoulement préférentiel, la conductivité hydraulique et l'évapotranspiration.
PorositéLa porosité est l'ensemble des vides (pores) d'un matériau, ces vides sont remplis par des fluides (liquides ou gaz). Les matériaux poreux sont très généralement des solides, mais il existe aussi des liquides poreux. La porosité est aussi une grandeur physique définie comme le rapport entre le volume des vides et le volume total d'un milieu poreux, sa valeur est comprise entre 0 et 1 (ou, en pourcentage, entre 0 et 100 %) : où : est la porosité, le volume des pores, et le volume total du matériau, c'est-à-dire la somme du volume de solide et du volume des pores.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Atmospheric modelIn atmospheric science, an atmospheric model is a mathematical model constructed around the full set of primitive, dynamical equations which govern atmospheric motions. It can supplement these equations with parameterizations for turbulent diffusion, radiation, moist processes (clouds and precipitation), heat exchange, soil, vegetation, surface water, the kinematic effects of terrain, and convection. Most atmospheric models are numerical, i.e. they discretize equations of motion.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Global Environmental Multiscale ModelThe Global Environmental Multiscale Model (GEM), often known as the CMC model in North America, is an integrated forecasting and data assimilation system developed in the Recherche en Prévision Numérique (RPN), Meteorological Research Branch (MRB), and the Canadian Meteorological Centre (CMC). Along with the NWS's Global Forecast System (GFS), which runs out to 16 days, the ECMWF's Integrated Forecast System (IFS), which runs out 10 days, the Naval Research Laboratory Navy Global Environmental Model (NAVGEM), which runs out eight days, the UK Met Office's Unified Model, which runs out to seven days, and Deutscher Wetterdienst's ICON (ICOsahedral Nonhydrostatic), which runs out to 7.