Complexe différentielEn mathématiques, un complexe différentiel est un groupe abélien (voire un module), ou plus généralement un objet d'une catégorie abélienne, muni d'un endomorphisme de carré nul (appelé différentielle ou bord), c'est-à-dire dont l' est contenue dans le noyau. Cette condition permet de définir son homologie, qui constitue un invariant essentiel en topologie algébrique. Un complexe différentiel peut être gradué pour constituer un complexe de chaines ou de cochaines).
CW-complexeEn topologie algébrique, un CW-complexe est un type d'espace topologique, défini par J. H. C. Whitehead pour répondre aux besoins de la théorie de l'homotopie. L'idée était de travailler sur une classe d'objets plus grande que celle des complexes simpliciaux et possédant de meilleures propriétés du point de vue de la théorie des catégories, mais présentant comme eux des propriétés combinatoires se prêtant aux calculs. Le nom CW provient du qualificatif de l'espace topologique, en anglais : closure-finite weak topology, pour « à fermeture finie » et « topologie faible ».
Complexe simplicialthumb|Exemple d'un complexe simplicial.En mathématiques, un complexe simplicial est un objet géométrique déterminé par une donnée combinatoire et permettant de décrire certains espaces topologiques en généralisant la notion de triangulation d'une surface. Un tel objet se présente comme un graphe avec des sommets reliés par des arêtes, sur lesquelles peuvent se rattacher des faces triangulaires, elles-mêmes bordant éventuellement des faces de dimension supérieure, etc.
Irradiation des alimentsthumb|Unité mobile d'irradiation alimentaire dans les années 1960 L'irradiation des aliments consiste à exposer des aliments à des rayonnements ionisants afin de réduire le nombre de micro-organismes qu'ils contiennent. Même si c'est une méthode controversée de conservation des aliments, elle est très utilisée. Ce procédé a été autorisé par la Food and Drug Administration et le Département de l'Agriculture des États-Unis. L'OMS l'a accepté pour l'alimentation humaine après des recherches scientifiques extensives.
RadiobiologieLa est l'étude des effets biologiques des rayonnements, notamment des rayonnements ionisants, sur les êtres vivants : sensibilité d'espèces, radiosensibilité individuelle ou pathologique ( syndrome de Gorlin), groupes vulnérables... C'est aussi l'étude des moyens de se préserver des effets délétères de certains rayonnements et l'étude des traitements à suivre en cas de contamination et/ou irradiation. C'est enfin une branche de la biologie médicale qui emploie des techniques radiologiques permettant l'investigation du corps humain.
Nombre complexeEn mathématiques, l'ensemble des nombres complexes est actuellement défini comme une extension de l'ensemble des nombres réels, contenant en particulier un nombre imaginaire noté i tel que i = −1. Le carré de (−i) est aussi égal à −1 : (−i) = −1. Tout nombre complexe peut s'écrire sous la forme x + i y où x et y sont des nombres réels. Les nombres complexes ont été progressivement introduit au par l’école mathématique italienne (Jérôme Cardan, Raphaël Bombelli, Tartaglia) afin d'exprimer les solutions des équations du troisième degré en toute généralité par les formules de Cardan, en utilisant notamment des « nombres » de carré négatif.
Complexe de coordinationvignette| Le cisplatine est un complexe de coordination du platine() avec deux ligands chlorure et deux ligands ammoniac formant une ammine. C'est l'un des anticancéreux les plus connus. Un complexe de coordination est constitué d'un atome ou d'ion central, généralement métallique, appelé centre de coordination, et d'un réseau de molécules ou d'ions liés, appelés ligands. De nombreux composés contenant des métaux, en particulier ceux qui comprennent des métaux de transition (éléments tels que le titane qui appartiennent au bloc du tableau périodique), sont des complexes de coordination.
TempératureLa température est une grandeur physique mesurée à l’aide d’un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux sensations de froid et de chaud, provenant du transfert thermique entre le corps humain et son environnement. En physique, elle se définit de plusieurs manières : comme fonction croissante du degré d’agitation thermique des particules (en théorie cinétique des gaz), par l’équilibre des transferts thermiques entre plusieurs systèmes ou à partir de l’entropie (en thermodynamique et en physique statistique).
Analyse complexeL'analyse complexe est un domaine des mathématiques traitant des fonctions à valeurs complexes (ou, plus généralement, à valeurs dans un C-espace vectoriel) et qui sont dérivables par rapport à une ou plusieurs variables complexes. Les fonctions dérivables sur un ouvert du plan complexe sont appelées holomorphes et satisfont de nombreuses propriétés plus fortes que celles vérifiées par les fonctions dérivables en analyse réelle. Entre autres, toute fonction holomorphe est analytique et vérifie le principe du maximum.
Variété complexeLes variétés complexes ou plus généralement les sont les objets d'étude de la géométrie analytique complexe. Une variété complexe de dimension n est un espace topologique obtenu par recollement d'ouverts de Cn selon des biholomorphismes, c'est-à-dire des bijections holomorphes. Plus précisément, une variété complexe de dimension n est un espace topologique dénombrable à l'infini (c'est-à-dire localement compact et σ-compact) possédant un atlas de cartes sur Cn, tel que les applications de changement de cartes soient des biholomorphismes.