Équations de Navier-Stokesthumb|Léonard de Vinci : écoulement dans une fontaine En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dérivées partielles non linéaires qui décrivent le mouvement des fluides newtoniens (donc des gaz et de la majeure partie des liquides). La résolution de ces équations modélisant un fluide comme un milieu continu à une seule phase est difficile, et l'existence mathématique de solutions des équations de Navier-Stokes n'est pas démontrée.
Équations de Boussinesqthumb|right|250px|Ondes de gravité à l'entrée d'un port (milieu à profondeur variable). Les équations de Boussinesq en mécanique des fluides désignent un système d'équations d'ondes obtenu par approximation des équations d'Euler pour des écoulements incompressibles irrotationnels à surface libre. Elles permettent de prévoir les ondes de gravité comme ondes cnoïdales, ondes de Stokes, houle, tsunamis, solitons, etc. Ces équations ont été introduites par Joseph Boussinesq en 1872 et sont un exemple d'équations aux dérivées partielles dispersives.
Fluide (matière)Un fluide est un milieu matériel parfaitement déformable. On regroupe sous cette appellation les liquides, les gaz et les plasmas. Gaz et plasmas sont très compressibles, tandis que les liquides le sont très peu (à peine plus que les solides). La transition de l'état liquide à l'état gazeux (ou réciproquement) est en général de premier ordre, c'est-à-dire brusque, discontinue.
Particule fluideUne particule fluide, en mécanique des fluides, est un volume élémentaire de fluide d'échelle mésoscopique. L’échelle mésoscopique est typiquement de l'ordre du micromètre. C'est une échelle d'une part suffisamment petite pour que la grandeur étudiée puisse être considérée comme ponctuelle, et d'autre part suffisamment grande pour pouvoir considérer le milieu comme continu, c'est-à-dire ne pas avoir à faire une étude discrète de toutes les molécules.
Métrique de SchwarzschildEn astrophysique, dans le cadre de la relativité générale, la métrique de Schwarzschild est une solution des équations d'Einstein. L'espace-temps, dont la métrique décrit la géométrie, a quatre dimensions ; il est vide mais courbe bien qu'asymptotiquement plat ; il est à symétrie sphérique et stationnaire ; il est statique à l'extérieur d'un rayon critique : le rayon de Schwarzschild ; et, lorsque le vide s'étend au-delà de ce rayon, la métrique met en évidence un trou noir : le trou noir de Schwarzschild .
Vacuum solution (general relativity)In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or non-gravitational fields are present. These are distinct from the electrovacuum solutions, which take into account the electromagnetic field in addition to the gravitational field.
Système intégrableEn mécanique hamiltonienne, un système intégrable au sens de Liouville est un système qui possède un nombre suffisant de indépendantes. Lorsque le mouvement est borné, la dynamique est alors périodique ou quasi périodique. Soit un système à N degrés de liberté qui est décrit à l'instant par : les N coordonnées généralisées les N moments conjugués . À chaque instant, les 2N coordonnées définissent un point dans l'espace des phases Γ = R2N. L'évolution dynamique du système sous le flot hamiltonien se traduit par une courbe continue appelée orbite dans cet espace des phases.
Mécanique des fluides numériqueLa mécanique des fluides numérique (MFN), plus souvent désignée par le terme anglais computational fluid dynamics (CFD), consiste à étudier les mouvements d'un fluide, ou leurs effets, par la résolution numérique des équations régissant le fluide. En fonction des approximations choisies, qui sont en général le résultat d'un compromis en termes de besoins de représentation physique par rapport aux ressources de calcul ou de modélisation disponibles, les équations résolues peuvent être les équations d'Euler, les équations de Navier-Stokes, etc.
Rupture de barragevignette|Le réservoir du barrage Teton se déversant lors de sa rupture en 1976 aux États-Unis. Une rupture de barrage se produit lorsque la structure cède du fait d'événements naturels (séisme, mouvement de terrain, crue, etc.) ou de défaillances humaines (mauvaise conception, négligence, sabotage, etc). Cette rupture a pour conséquence le déversement non contrôlé de l'eau ou de la boue contenues par le barrage. Ce type de catastrophe reste peu fréquent mais chaque occurrence engendre de graves conséquences humaines, environnementales et techniques.
Dispersion (water waves)In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium. For a certain water depth, surface gravity waves – i.e.