Résumé
En astrophysique, dans le cadre de la relativité générale, la métrique de Schwarzschild est une solution des équations d'Einstein. L'espace-temps, dont la métrique décrit la géométrie, a quatre dimensions ; il est vide mais courbe bien qu'asymptotiquement plat ; il est à symétrie sphérique et stationnaire ; il est statique à l'extérieur d'un rayon critique : le rayon de Schwarzschild ; et, lorsque le vide s'étend au-delà de ce rayon, la métrique met en évidence un trou noir : le trou noir de Schwarzschild . La métrique s'interprète comme décrivant le champ gravitationnel à l'extérieur d'un corps isolé, à symétrie sphérique, statique (sans rotation), non chargé et entouré de vide. Cette masse peut être une étoile, une planète ou un trou noir de Schwarzschild. On ne prend pas en compte ici le rayon de la sphère, ni même sa densité, on considère seulement que la masse est concentrée en dessous de r (distance radiale), la métrique est donc valide uniquement à l’extérieur de la sphère. La plupart des tests de la relativité générale dans le Système solaire sont basés sur l'étude des géodésiques de cette métrique. L'éponyme de la métrique de Schwarzschild est l'astronome allemand Karl Schwarzschild (-) qui l'a découverte en . Elle est la première solution exacte à l'équation du champ gravitationnel d'Albert Einstein comprenant une masse. Schwarzschild l'a obtenue à partir de la version de l'équation énoncée par Einstein dans son article sur l'avance du périhélie de Mercure, publié le . La métrique de Schwarzschild est parfois dite « extérieure » afin de la distinguer de celle, dite « intérieure », qui est la seconde solution exacte à l'équation d'Einstein découverte par Schwarzschild. En , Urbain Le Verrier (-) présente une étude de l'orbite de Mercure qui met en évidence que l'avance de son périhélie ne peut peut s'expliquer par les perturbations causées par les autres planètes connues du Système solaire. En , Simon Newcomb (-) obtient les même résultats.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (68)
Équation d'Einstein
vignette|Équation sur un mur à Leyde. L’'équation d'Einstein ou équation de champ d'Einstein' (en anglais, Einstein field equation ou EFE), publiée par Albert Einstein, pour la première fois le , est l'équation aux dérivées partielles principale de la relativité générale. C'est une équation dynamique qui décrit comment la matière et l'énergie modifient la géométrie de l'espace-temps. Cette courbure de la géométrie autour d'une source de matière est alors interprétée comme le champ gravitationnel de cette source.
Métrique de Schwarzschild
En astrophysique, dans le cadre de la relativité générale, la métrique de Schwarzschild est une solution des équations d'Einstein. L'espace-temps, dont la métrique décrit la géométrie, a quatre dimensions ; il est vide mais courbe bien qu'asymptotiquement plat ; il est à symétrie sphérique et stationnaire ; il est statique à l'extérieur d'un rayon critique : le rayon de Schwarzschild ; et, lorsque le vide s'étend au-delà de ce rayon, la métrique met en évidence un trou noir : le trou noir de Schwarzschild .
Horizon des événements
L'horizon des événements est, en relativité restreinte et en relativité générale, constitué par la limite éventuelle de la région qui peut être influencée dans le futur par un observateur situé en un endroit donné à une époque donnée. Dans le cas d'un trou noir, en particulier, on peut définir son horizon des événements comme une surface qui l'entoure, d'où aucun objet, ni même un rayon de lumière ne peut jamais échapper au champ gravitationnel du trou noir.
Afficher plus
Cours associés (6)
PHYS-427: Relativity and cosmology I
Introduce the students to general relativity and its classical tests.
MATH-530: Introduction to general relativity
This course will serve as a basic introduction to the mathematical theory of general relativity. We will cover topics including the formalism of Lorentzian geometry, the formulation of the initial val
PHYS-428: Relativity and cosmology II
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory and discusses major
Afficher plus
Séances de cours associées (78)
Les équations d'Einstein : la mécanique relativiste
Couvre les équations d'Einstein dans la limite non relativiste et la métrique de Schwarzschild.
Déviation de la lumière: observations et méthodes
Explore la déviation de la lumière par gravité et les méthodes d'étude de la distribution de la matière.
Tenseur énergétique : Dérivation et conservation
Explore la dérivation et la conservation du tenseur d'énergie pour les particules ponctuelles, y compris l'impact des champs électromagnétiques et de la métrique de Schwarzschild.
Afficher plus