Segmentation d'imageLa segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Scale-invariant feature transform[[Fichier:Matching of two images using the SIFT method.jpg|thumb|right|alt=Exemple de mise en correspondance de deux images par la méthode SIFT : des lignes vertes relient entre eux les descripteurs communs à un tableau et une photo de ce même tableau, de moindre qualité, ayant subi des transformations. |Exemple de résultat de la comparaison de deux images par la méthode SIFT (Fantasia ou Jeu de la poudre, devant la porte d’entrée de la ville de Méquinez, par Eugène Delacroix, 1832).
Fonction objectifvignette|comparaison de certains substituts de la fonction de perte Le terme fonction objectif ou fonction économique, est utilisé en optimisation mathématique et en recherche opérationnelle pour désigner une fonction qui sert de critère pour déterminer la meilleure solution à un problème d'optimisation. Elle associe une valeur à une instance d'un problème d'optimisation. Le but du problème d'optimisation est alors de minimiser ou de maximiser cette fonction jusqu'à l'optimum, par différents procédés comme l'algorithme du simplexe.
Binary classificationBinary classification is the task of classifying the elements of a set into two groups (each called class) on the basis of a classification rule. Typical binary classification problems include: Medical testing to determine if a patient has certain disease or not; Quality control in industry, deciding whether a specification has been met; In information retrieval, deciding whether a page should be in the result set of a search or not. Binary classification is dichotomization applied to a practical situation.
Prise de décisionvignette|Lorsqu'il s'agit de prendre une décision, il est bon de savoir que des situations différentes nécessitent une approche différente. Il n'y a pas de façon unique de penser/d'agir. la plupart du temps, nous errons dans l'espace du désordre, sans savoir ce qui se passe, sans savoir comment agir. Dans ce cas, nous avons tendance à entrer dans l'espace avec lequel nous nous sentons le plus à l'aise et à commencer à agir. Lorsque vous avez trouvé le Saint Graal, la solution unique pour chaque problème, vous feriez mieux de faire attention.
Fréquence (statistiques)vignette|Fréquence des traits de kanji En statistique, on appelle fréquence absolue l'effectif des observations d'une classe et fréquence relative ou simplement fréquence, le quotient de cet effectif par celui de la population. L'expression fréquence = valeur n'est jamais ambigüe. Si valeur est un nombre entier positif, il s'agit de la fréquence absolue, c'est-à-dire l'effectif de la classe. Si valeur est un nombre compris entre 0 et 1 ou un pourcentage, il s'agit de la fréquence relative.
Positive-definite kernelIn operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues and generalizations have arisen in diverse parts of mathematics.
Mode (statistiques)En statistique, le mode, ou valeur dominante, est la valeur la plus représentée d'une variable quelconque dans une population donnée. Une répartition peut être unimodale ou plurimodale (bimodale, trimodale...), si deux ou plusieurs valeurs de la variable considérée émergent également, voire sans aucun mode (distribution uniforme) si toutes les valeurs de la variable considérée émergent également. Dans le cas d'une répartition en classes d'amplitudes égales, la classe modale désigne celle qui a le plus fort effectif.
Boîte à moustachesDans les représentations graphiques de données statistiques, la boîte à moustaches, aussi appelée diagramme en boîte, boîtes à pattes, boîte de Tukey (en anglais, box-and-whisker plot, plus simplement box plot) est un moyen rapide de figurer le profil essentiel d'une série statistique quantitative. Elle a été inventée en 1977 par John Tukey, mais peut faire l'objet de certains aménagements selon les utilisateurs. La boîte à moustaches résume seulement quelques indicateurs de position du caractère étudié (médiane, quartiles, minimum, maximum ou déciles).
Mean shiftMean shift is a non-parametric feature-space mathematical analysis technique for locating the maxima of a density function, a so-called mode-seeking algorithm. Application domains include cluster analysis in computer vision and . The mean shift procedure is usually credited to work by Fukunaga and Hostetler in 1975. It is, however, reminiscent of earlier work by Schnell in 1964. Mean shift is a procedure for locating the maxima—the modes—of a density function given discrete data sampled from that function.