Entropie de ShannonEn théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
Statistique de testEn statistique, une statistique de test - aussi appelée variable de décision - est une variable aléatoire construite à partir d'un échantillon statistique permettant de formuler une règle de décision pour un test statistique. Cette statistique n'est pas unique, ce qui permet de construire différentes règles de décision et de les comparer à l'aide de la notion de puissance statistique. Il est impératif de connaitre sa loi de probabilité lorsque l'hypothèse nulle est vraie. Sa loi sous l'hypothèse alternative est souvent inconnue.
Inférence de typesL'inférence de types est un mécanisme qui permet à un compilateur ou un interpréteur de rechercher automatiquement les types associés à des expressions, sans qu'ils soient indiqués explicitement dans le code source. Il s'agit pour le compilateur ou l'interpréteur de trouver le type le plus général que puisse prendre l'expression. Les avantages à disposer de ce mécanisme sont multiples : le code source est plus aéré, le développeur n'a pas à se soucier de retenir les noms de types, l'interpréteur fournit un moyen au développeur de vérifier (en partie) le code qu'il a écrit et le programme est peu modifié en cas de changement de structure de données.
Type (informatique)vignette|Présentation des principaux types de données. En programmation informatique, un type de donnée, ou simplement un type, définit la nature des valeurs que peut prendre une donnée, ainsi que les opérateurs qui peuvent lui être appliqués. La plupart des langages de programmation de haut niveau offrent des types de base correspondant aux données qui peuvent être traitées directement — à savoir : sans conversion ou formatage préalable — par le processeur.
Signification statistiquevignette|statistique En statistiques, le résultat d'études qui portent sur des échantillons de population est dit statistiquement significatif lorsqu'il semble exprimer de façon fiable un fait auquel on s'intéresse, par exemple la différence entre 2 groupes ou une corrélation entre 2 données. Dit autrement, il est alors très peu probable que ce résultat apparent soit en fait trompeur s'il n'est pas dû, par exemple, à un , trop petit ou autrement non représentatif (surtout si la population est très diverse).
Entropy rateIn the mathematical theory of probability, the entropy rate or source information rate of a stochastic process is, informally, the time density of the average information in a stochastic process. For stochastic processes with a countable index, the entropy rate is the limit of the joint entropy of members of the process divided by , as tends to infinity: when the limit exists. An alternative, related quantity is: For strongly stationary stochastic processes, .
Conversion de typeEn informatique la conversion de type, le transtypage ou la coercition (cast en anglais) est le fait de convertir une valeur d'un type (source) dans un autre (cible). On distingue trois formes de conversion (dont un seul mérite vraiment le nom de conversion) suivant la relation de sous-typage existant entre les types source et cible : la conversion entre types incomparables ; la coercition ascendante (transtypage vers le haut) ; la coercition descendante (transtypage vers le bas). C'est la coercition la plus ancienne historiquement.
Type dépendantEn Informatique et en Logique, un type dépendant est un type qui peut dépendre d'une valeur définie dans le langage typé. Les langages Agda et Gallina (de l'assistant de preuve Coq) sont des exemples de langages à type dépendant. Les types dépendants permettent par exemple de définir le type des listes à n éléments. Voici un exemple en Coq. Inductive Vect (A: Type): nat -> Type := | nil: Vect A 0 | cons (n: nat) (x: A) (t: Vect A n): Vect A (S n).
Entropie minEn probabilités et en théorie de l'information, l'entropie min d'une variable aléatoire discrète X prenant n valeurs ou sorties possibles 1... n associées au probabilités p1... pn est : La base du logarithme est juste une constante d'échelle. Pour avoir un résultat en bits, il faut utiliser le logarithme en base 2. Ainsi, une distribution a une entropie min d'au moins b bits si aucune sortie n'a une probabilité plus grande que 2-b. L'entropie min est toujours inférieure ou égale à l'entropie de Shannon; avec égalité si toutes les valeurs de X sont équiprobables.
Error exponentIn information theory, the error exponent of a channel code or source code over the block length of the code is the rate at which the error probability decays exponentially with the block length of the code. Formally, it is defined as the limiting ratio of the negative logarithm of the error probability to the block length of the code for large block lengths. For example, if the probability of error of a decoder drops as , where is the block length, the error exponent is . In this example, approaches for large .