Electric field effect on superconductivity in $La_{2-x}$$Sr_{x}$$CuO_{4}$
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
More than one hundred years after the discovery of superconductivity in Leiden, the intriguing physics of several unconventional classes of superconductors continue to fascinate and challenge scientists from all over the world. The majority of these compou ...
Superconductivity often emerges in the proximity of, or in competition with, symmetry-breaking ground states such as antiferromagnetism or charge density waves(1-5) (CDW). A number of materials in the cuprate family, which includes the high transition-temp ...
We demonstrate that the thermopower (S) can be used to probe the spin fluctuations (SFs) in proximity to the quantum critical point (QCP) in Fe-based superconductors. The sensitivity of S to the entropy of charge carriers allows us to observe an increase o ...
This short review focuses on interface interactions in hybrid heterostructures which combine high-temperature superconductors, ferromagnets and ferroelectrics. We specifically examine two different phenomena. One of them is electric-field effects at superc ...
Iron-based superconductors could be useful for electricity distribution and superconducting magnet applications because of their relatively high critical current densities and upper critical fields. SmFeAsO0.8F0.15 is of particular interest as it has the h ...
Here, we show that in several p-type cuprates, the superconductor-to-insulator transition (SIT) occurs at the critical sheet resistance approximately equal to the quantum resistance of pairs, RQ=h/4e2=6.5 kΩ. In a relatively broad range of temperature ...
BaVS3 presents a metal-to-insulator (MI) transition at ambient pressure due to the stabilization of a 2k(F) commensurate charge density wave (CDW) Peierls ground state built on the dz(2) V orbitals. The MI transition vanishes under pressure at a quantum cr ...
The origin of pairing in a superconductor resides in the underlying normal state. In the cuprate high-temperature superconductor YBa2Cu 3Oy (YBCO), application of a magnetic field to suppress superconductivity reveals a ground state that appears to break t ...
In conventional and high transition temperature copper oxide and iron pnictide superconductors, the Cooper pairs all have even parity. As a rare exception, Sr2RuO4 is the first prime candidate for topological chiral p-wave superconductivity, which has time ...
High-temperature superconductivity in copper oxides arises when a parent insulator compound is doped beyond some critical concentration; what exactly happens at this superconductor–insulator transition is a key open question1. The cleanest approach is to t ...