Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In the two-well problem we look for a map u which satisfies Dirichlet boundary conditions and whose gradient Du assumes values in SO (2) A boolean OR SO (2) B = S-A boolean OR S-B, for two given invertible matrices A, B (an element of SO (2) A is of the form RA where R is a rotation). In the original approach by Ball and James [1], [2] A, B are two matrices such that det B > det A > 0 and rank {A - B} = 1. It was proved in the 1990's (see [4], [5], [6], [7], [17]) that a map u satisfying given boundary conditions and such that Du is an element of S-A boolean OR S-B exists in the Sobolev class W-1,W-infinity (Omega; R-2) of Lipschitz continuous maps. However, for orthogonal matrices it was also proved (see [3], [8], [9], [10], [11], [12], [16]) that solutions exist in the class of piecewise-C-1 maps, in particular in the class of piecewise-affine maps. We prove here that this possibility does not exist for other nonsingular matrices A, B: precisely, the two-well problem can be solved by means of piecewise-affine maps only for orthogonal matrices.
Annalisa Buffa, Pablo Antolin Sanchez, Giuliano Guarino