Catégorie

Méthode des éléments finis

Résumé
En analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques). Cette méthode permet par exemple de calculer numériquement le comportement d'objets même très complexes, à condition qu'ils soient continus et décrits par une équation aux dérivées partielles linéaire : mouvement d'une corde secouée par l'un de ses bouts, comportement d'un fluide arrivant à grande vitesse sur un obstacle, déformation d'une structure métallique La méthode des éléments finis fait partie des outils de mathématiques appliquées. Il s'agit de mettre en place, à l'aide des principes hérités de la formulation variationnelle ou formulation faible, un algorithme discret mathématique permettant de rechercher une solution approchée d’une équation aux dérivées partielles (ou EDP) sur un domaine compact avec conditions aux bords et/ou dans l'intérieur du compact. On parle couramment de conditions de type Dirichlet (valeurs aux bords) ou Neumann (gradients aux bords) ou de Robin (relation gradient/valeurs sur le bord). Il s'agit donc avant tout de la résolution approchée d'un problème, où, grâce à la formulation variationnelle, les solutions du problème vérifient des conditions d'existence plus faibles que celles des solutions du problème de départ et où une discrétisation permet de trouver une solution approchée. Comme de nombreuses autres méthodes numériques, outre l'algorithme de résolution en soi, se posent les questions de qualité de la discrétisation : existence de solutions ; unicité de la solution ; stabilité ; convergence ; mesure d'erreur entre une solution discrète et une solution unique du problème initial. Sont décrits ici le cadre général de la méthode des éléments finis, ainsi que le cas pratique le plus courant, considérant des équations aux dérivées partielles linéaires dont on cherche une approximation par des fonctions affines.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Catégories associées (16)
Distribution (mathématiques)
En analyse mathématique, une distribution (également appelée fonction généralisée) est un objet qui généralise la notion de fonction et de mesure. La théorie des distributions étend la notion de dérivée à toutes les fonctions localement intégrables et au-delà, et est utilisée pour formuler des solutions à certaines équations aux dérivées partielles. Elles sont importantes en physique et en ingénierie où beaucoup de problèmes discontinus conduisent naturellement à des équations différentielles dont les solutions sont des distributions plutôt que des fonctions ordinaires.
Mécanique des fluides
La mécanique des fluides est un domaine de la physique consacré à l’étude du comportement des fluides (liquides, gaz et plasmas) et des forces internes associées. C’est une branche de la mécanique des milieux continus qui modélise la matière à l’aide de particules assez petites pour relever de l’analyse mathématique, mais assez grandes par rapport aux molécules pour être décrites par des fonctions continues. Elle comprend deux sous-domaines : la statique des fluides, qui est l’étude des fluides au repos, et la dynamique des fluides, qui est l’étude des fluides en mouvement.
Mécanique newtonienne
La mécanique newtonienne est une branche de la physique. Depuis les travaux d'Albert Einstein, elle est souvent qualifiée de mécanique classique. La mécanique classique ou mécanique newtonienne est une théorie physique qui décrit le mouvement des objets macroscopiques lorsque leur vitesse est faible par rapport à celle de la lumière. Avant de devenir une science à part entière, la mécanique a longtemps été une section des mathématiques. De nombreux mathématiciens y ont apporté une contribution souvent décisive, parmi eux des grands noms tels qu'Euler, Cauchy, Lagrange.
Afficher plus
Concepts associés (23)
Principe des puissances virtuelles
Le principe des puissances virtuelles ou PPV est un principe fondamental en mécanique, qui postule un équilibre de puissance dans un mouvement virtuel, il s'agit d'une formulation duale du principe fondamental de la dynamique ou PFD. Il permet de retrouver certains principes ou théorèmes comme le principe fondamental de la dynamique et le théorème de l'énergie cinétique, et constitue aussi la base d'une démarche de modélisation pour les milieux continus (théorie du premier gradient, théorie du second gradient).
Hydrodynamique des particules lissées
L'hydrodynamique des particules lissées, en anglais Smoothed particle hydrodynamics (SPH), est une méthode de calcul utilisée pour simuler la mécanique des milieux continus, comme la mécanique des solides ou les écoulements de fluides. Elle a été développée par Gingold, Monaghan et Lucy en 1977, initialement pour des problèmes d'astrophysique. Elle a été utilisée dans de nombreux domaines de recherche, incluant l'astrophysique, la balistique, la volcanologie et océanologie.
Méthode de Galerkine discontinue
Les méthodes de Galerkine discontinues (méthodes GD, en abrégé) sont une classe de méthode numérique de résolution des équations aux dérivées partielles, nommées en référence au mathématicien Boris Galerkine. Elle réunit des propriétés de la méthode des éléments finis (approximation polynomiale de la solution par cellule) et de la méthode des volumes finis (définition locale de l'approximation et calcul des flux aux interfaces des cellules du maillage).
Afficher plus
Cours associés (39)
ME-372: Finite element method
L'étudiant acquiert une initiation théorique à la méthode des éléments finis qui constitue la technique la plus courante pour la résolution de problèmes elliptiques en mécanique. Il apprend à applique
ChE-403: Heterogeneous reaction engineering
The theoretical background and practical aspects of heterogeneous reactions including the basic knowledge of heterogeneous catalysis are introduced. The fundamentals are given to allow the design of m
ME-474: Numerical flow simulation
This course provides practical experience in the numerical simulation of fluid flows. Numerical methods are presented in the framework of the finite volume method. A simple solver is developed with Ma
Afficher plus
Séances de cours associées (644)
Méthode des éléments finis : Approche locale
Explore l'approche locale dans la méthode des éléments finis, couvrant les fonctions de forme nodale et l'assemblage.
Méthode des éléments finis : Approche locale
Explore l'approche locale de la méthode des éléments finis, couvrant les fonctions de forme nodale, les restrictions de solution, les tailles, les conditions aux limites et les opérations d'assemblage.
Méthode des éléments finis : Approche globale vs locale
Compare les approches globales et locales de la méthode des éléments finis.
Afficher plus
MOOCs associés (7)
Mécanique des Fluides
Ce cours de base est composé des sept premiers modules communs à deux cours bachelor, donnés à l’EPFL en génie mécanique et génie civil.
Matlab et Octave pour débutants
Premiers pas dans MATLAB et Octave avec un regard vers le calcul scientifique
Matlab et Octave pour débutants
Premiers pas dans MATLAB et Octave avec un regard vers le calcul scientifique
Afficher plus
Publications associées (974)

Exponential convergence to steady-states for trajectories of a damped dynamical system modeling adhesive strings

Nicola De Nitti

We study the global well-posedness and asymptotic behavior for a semilinear damped wave equation with Neumann boundary conditions, modeling a one-dimensional linearly elastic body interacting with a rigid substrate through an adhesive material. The key fea ...
World Scientific Publ Co Pte Ltd2024

An interior penalty coupling strategy for isogeometric non-conformal Kirchhoff-Love shell patches

Annalisa Buffa, Pablo Antolin Sanchez, Giuliano Guarino

This work focuses on the coupling of trimmed shell patches using Isogeometric Analysis, based on higher continuity splines that seamlessly meet the C 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackag ...
Springer2024

Hitting with Probability One for Stochastic Heat Equations with Additive Noise

Robert Dalang, Fei Pu

We study the hitting probabilities of the solution to a system of d stochastic heat equations with additive noise subject to Dirichlet boundary conditions. We show that for any bounded Borel set with positive (d-6)\documentclass[12pt]{minimal} \usepackage{ ...
Springer/Plenum Publishers2024
Afficher plus