Functional genomicsFunctional genomics is a field of molecular biology that attempts to describe gene (and protein) functions and interactions. Functional genomics make use of the vast data generated by genomic and transcriptomic projects (such as genome sequencing projects and RNA sequencing). Functional genomics focuses on the dynamic aspects such as gene transcription, translation, regulation of gene expression and protein–protein interactions, as opposed to the static aspects of the genomic information such as DNA sequence or structures.
Structure tertiaireEn biochimie, la structure tertiaire ou tridimensionnelle est le repliement dans l'espace d'une chaîne polypeptidique. Ce repliement donne sa fonctionnalité à la protéine, notamment par la formation du site actif des enzymes. . La structure tertiaire correspond au degré d'organisation supérieur aux hélices α ou aux feuillets β. Ces protéines possèdent des structures secondaires associées le long de la chaîne polypeptidique. Le repliement et la stabilisation de protéines à structure tertiaire dépend de plusieurs types de liaisons faibles qui stabilisent l'édifice moléculaire.
Banque de grainesvignette|Tiroirs de la « Banque de graine » (Seedbank) de la Western Regional Plant Introduction Station de Pullman (Washington). Les banques de graines sont des lieux protégés où on maintient ex-situ et souvent en congélation des graines de plantes sauvages ou cultivées. Des banques de graines existent dans plusieurs pays qui regroupent des millions d’échantillons de nombreuses espèces, sous-espèces ou variétés cultivées et parfois sauvages. Ces banques peuvent ou non travailler avec des conservatoires botaniques, ou vergers conservatoires, nationaux ou privés.
Ludwig BoltzmannLudwig Eduard Boltzmann (né le à Vienne, Autriche et mort le à Duino) est un physicien et philosophe autrichien. Il est considéré comme le père de la physique statistique et un fervent défenseur de l’existence des atomes. Validant l’hypothèse de Démocrite selon laquelle « la matière peut être considérée comme un ensemble d'entités indivisibles », Boltzmann, à l'aide de son équation cinétique dite « de Boltzmann », a théorisé de nombreuses équations de mécanique des fluides et de théorie cinétique des gaz.
Tige-bouclethumb|right|Structure en tige et boucle formée par une séquence répétée inversée sur l'ARN. Une tige-boucle (ou "structure en tige et boucle"), également connue sous le nom de structure en épingle à cheveux, est une structure intramoléculaire qui se forme sur un brin d'acide nucléique. On les trouve principalement dans l'ARN, qui existe principalement sous forme simple-brin dans les cellules. Elle se forme lorsque deux régions de la même molécule contenant des séquences répétées inversées de bases complémentaires s'apparient pour former localement une structure en double hélice.
Dicervignette|La protéine Dicer Dicer est une enzyme impliquée dans le processus d'ARN interférence. Ses quatre domaines protéiques sont encodés par le gène DICER1. La protéine dicer composée de 1922 acides aminés, aussi connue sous le nom d’endoribonucléase dicer, est une ribonucléase de classe 3 qui clive les fragments doubles brins d’ARN et les pré-microARN afin d’obtenir des petits ARN interférant et des microARN. Ces fragments ont une longueur d’environ 25 paires de bases et la coupure laisse une extrémité cohésive 3’ débordante de deux bases.
SplicéosomeLe splicéosome, aussi appelé particule d'épissage (en anglais, splicing) ou épissosome, est un complexe dynamique de particules ribonucléoprotéiques (composées d'ARNr et de plus de 200 protéines) et localisé dans le noyau des cellules. L'assemblage de la particule d'épissage à partir de ses sous-unités ribonucléoprotéiques nécessite de l'ATP. Son rôle est d'assurer l'excision des introns, des régions non codantes de l'ARN prémessagers et la suture des exons, qui correspondent aux parties codantes, mais également la détection des sites introniques d'épissage.
Lattice proteinLattice proteins are highly simplified models of protein-like heteropolymer chains on lattice conformational space which are used to investigate protein folding. Simplification in lattice proteins is twofold: each whole residue (amino acid) is modeled as a single "bead" or "point" of a finite set of types (usually only two), and each residue is restricted to be placed on vertices of a (usually cubic) lattice. To guarantee the connectivity of the protein chain, adjacent residues on the backbone must be placed on adjacent vertices of the lattice.
Synonymous substitutionA synonymous substitution (often called a silent substitution though they are not always silent) is the evolutionary substitution of one base for another in an exon of a gene coding for a protein, such that the produced amino acid sequence is not modified. This is possible because the genetic code is "degenerate", meaning that some amino acids are coded for by more than one three-base-pair codon; since some of the codons for a given amino acid differ by just one base pair from others coding for the same amino acid, a mutation that replaces the "normal" base by one of the alternatives will result in incorporation of the same amino acid into the growing polypeptide chain when the gene is translated.
Glossary of genetics (0–L)This glossary of genetics is a list of definitions of terms and concepts commonly used in the study of genetics and related disciplines in biology, including molecular biology, cell biology, and evolutionary biology. It is split across two articles: This page, Glossary of genetics (0–L), lists terms beginning with numbers and those beginning with the letters A through L. Glossary of genetics (M–Z) lists terms beginning with the letters M through Z.