Tétraèdrethumb|Un tétraèdre. thumb|Paul Sérusier, Tétraèdres, vers 1910. En géométrie, les tétraèdres (du grec tétra : quatre) sont des polyèdres de la famille des pyramides, composés de triangulaires, et . Le 3-simplexe est la représentation abstraite du tétraèdre ; dans ce modèle, les arêtes s'identifient aux 6 sous-ensembles à 2 éléments de l'ensemble des quatre sommets, et les faces aux 4 sous-ensembles à 3 éléments. Chaque sommet d'un tétraèdre est relié à tous les autres par une arête, et de même chaque face est reliée à toutes les autres par une arête.
Tesseractic honeycombIn four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations (or honeycombs), represented by Schläfli symbol {4,3,3,4}, and constructed by a 4-dimensional packing of tesseract facets. Its vertex figure is a 16-cell. Two tesseracts meet at each cubic cell, four meet at each square face, eight meet on each edge, and sixteen meet at each vertex. It is an analog of the square tiling, {4,4}, of the plane and the cubic honeycomb, {4,3,4}, of 3-space.
Simplicial polytopeIn geometry, a simplicial polytope is a polytope whose facets are all simplices. For example, a simplicial polyhedron in three dimensions contains only triangular faces and corresponds via Steinitz's theorem to a maximal planar graph. They are topologically dual to simple polytopes. Polytopes which are both simple and simplicial are either simplices or two-dimensional polygons. Simplicial polyhedra include: Bipyramids Gyroelongated dipyramids Deltahedra (equilateral triangles) Platonic tetrahedron, octahed
Système cristallin cubiqueEn cristallographie, le système cristallin cubique (ou isométrique) est un système cristallin qui contient les cristaux dont la maille élémentaire est cubique, c'est-à-dire possédant quatre axes ternaires de symétrie. Il existe trois types de telles structures : cubique simple, cubique centrée et cubique à faces centrées. Classe cristalline Le tableau ci-dessous fournit les numéros de groupe d'espace des tables internationales de cristallographie du système cristallin cubique, les noms des classes cristallines, les notations Schoenflies, internationales, et des groupes ponctuels, des exemples, le type et les groupes d'espace.
Groupe de papier peintUn groupe de papier peint (ou groupe d'espace bidimensionnel, ou groupe cristallographique du plan) est un groupe mathématique constitué par l'ensemble des symétries d'un motif bidimensionnel périodique. De tels motifs, engendrés par la répétition (translation) à l'infini d'une forme dans deux directions du plan, sont souvent utilisés en architecture et dans les arts décoratifs. Il existe 17 types de groupes de papier peint, qui permettent une classification mathématique de tous les motifs bidimensionnels périodiques.
Pavage trihexagonalLe pavage trihexagonal est, en géométrie, un pavage semi-régulier du plan euclidien, constitué de triangles équilatéraux et d'hexagones. Au Japon, ce pavage est utilisé en vannerie sous le nom de Kagomé. En physique, ce pavage est appelé réseau de Kagomé d'après le terme japonais. On l'observe dans la structure cristalline de certains matériaux, notamment l'herbertsmithite. Il est très étudié en magnétisme car sa frustration géométrique génère des phases magnétiques exotiques, comme le liquide de spin. Tri
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Octaèdre tronquéthumb|Développement de l'octaèdre tronqué. L'octaèdre tronqué, ou tétrakaidécaèdre d'Archimède, est un polyèdre possédant 8 faces hexagonales régulières, carrées, identiques et égales. Ses faces étant des polygones réguliers se rencontrant en des sommets identiques, l'octaèdre tronqué est un solide d'Archimède. Chaque face ayant un centre de symétrie, c'est aussi un zonoèdre (à six générateurs). Comme le cube, l'octaèdre tronqué permet de paver l'espace.
Liaison covalenteUne liaison covalente est une liaison chimique dans laquelle deux atomes se partagent deux électrons (un électron chacun ou deux électrons venant du même atome) d'une de leurs couches externes afin de former un doublet d'électrons liant les deux atomes. C'est une des forces qui produisent l'attraction mutuelle entre atomes. La liaison covalente implique généralement le partage équitable d'une seule paire d'électrons, appelé doublet liant. Chaque atome fournissant un électron, la paire d'électrons est délocalisée entre les deux atomes.
Électron de valenceUn électron de valence est un électron situé dans la couche de valence d'un atome. Les propriétés physiques d'un élément sont largement déterminées par leur configuration électronique, notamment la configuration de la couche de valence. La présence d'un ou plusieurs électrons de valence joue un rôle important dans cette définition des car elle permet de déterminer la valence . Lorsqu'un atome a une couche de valence incomplète, il peut partager ou donner des électrons de valence avec d'autres atomes pour remplir sa couche externe et former une liaison chimique stable.