Factorisation de graphesvignette|200x200px| Une 1-factorisation du graphe de Desargues : chaque classe de couleur est un 1-facteur. droite|vignette|200x200px| Le graphe de Petersen peut être partitionné en un 1-facteur 1 (en rouge) et un 2-facteur 2 (en bleu). Cependant, le graphe n'est pas 1-factorisable. En théorie des graphes, un facteur d'un graphe G est un graphe partiel, c'est-à-dire un graphe qui a le même ensemble de sommets que G et dont les arêtes sont contenues dans celles de G.
Algorithme de l'arbre de jonctionL'algorithme de l'arbre de jonction (aussi appelé algorithme somme-produit ; en anglais, Junction Tree Algorithm ou JTA) est un algorithme d'apprentissage automatique. Il est utilisé dans la théorie des modèles graphiques. Un arbre de jonction est une factorisation partiellement préconstruite. C'est un graphe de cliques construit de manière que le produit des fonctions de potentiels soit égal à la probabilité conjointe de l'ensemble des variables. Un arbre de jonction sert à réaliser de l'inférence, par propagation de convictions.
Graphe de HeawoodEn théorie des graphes, le graphe de Heawood est un graphe cubique symétrique possédant 14 sommets et 21 arêtes. Il doit son nom à Percy John Heawood, un mathématicien britannique né en 1861 et mort en 1955. Le graphe de Heawood est une (3,6)-cage, c'est-à-dire un graphe minimal en nombres de sommets ayant une maille de 6 et étant cubique. En fait, il s'agit de l'unique (3,6)-cage et sa taille coïncide avec la borne de Moore, une borne inférieure sur le nombre de sommets que peut avoir une cage.
Grundy numberIn graph theory, the Grundy number or Grundy chromatic number of an undirected graph is the maximum number of colors that can be used by a greedy coloring strategy that considers the vertices of the graph in sequence and assigns each vertex its first available color, using a vertex ordering chosen to use as many colors as possible. Grundy numbers are named after P. M. Grundy, who studied an analogous concept for directed graphs in 1939. The undirected version was introduced by .
Théorie de l'éliminationEn algèbre commutative et en géométrie algébrique, la théorie de l'élimination traite de l'approche algorithmique de l'élimination de variables entre polynômes. Le cas linéaire est maintenant couramment traité par élimination de Gauss, plus efficace que la méthode de Cramer. De même, des algorithmes d'élimination s'appuient sur des calculs de bases de Gröbner, alors qu'il existe des publications anciennes sur divers types d'« éliminants », comme le résultant pour trouver les racines communes à deux polynômes, le discriminant, etc.
Théorème des restes chinoisEn mathématiques, le théorème des restes chinois est un résultat d'arithmétique modulaire traitant de résolution de systèmes de congruences. Ce résultat, initialement établi pour Z/nZ, se généralise en théorie des anneaux. Ce théorème est utilisé en théorie des nombres. vignette|Exemple de Sun Zi : il y a 23 objets. La forme originale du théorème apparait sous forme de problème dans le livre de Sun Zi, le , datant du . Il est repris par le mathématicien chinois Qin Jiushao dans son ouvrage le Shùshū Jiǔzhāng (« Traité mathématique en neuf chapitres ») publié en 1247.