Réduction en espace logarithmiqueEn théorie de la complexité, une réduction en espace logarithmique est une réduction calculable par une machine de Turing disposant d'un espace de travail logarithmique. La machine de Turing utilisée pour une réduction en espace logarithmique est constituée de trois rubans au lieu d'un : un ruban d'entrée (en lecture seule), un ruban de travail (de taille logarithmique en la taille du ruban d'entrée), et un ruban de sortie (en écriture seule et tel que la tête d'écriture ne peut écrire deux fois sur une même case).
Maison à basse consommation d'énergiethumb|Thermographie d'une maison à basse consommation d'énergie, montrant les pertes de chaleur (comparées à celles d'un bâtiment traditionnel à l'arrière-plan). Une maison à basse consommation d'énergie est une maison dont les choix de construction (orientation du bâtiment, matériaux et types d'énergies utilisés) permettent de limiter la consommation énergétique. Ce type de maison est devenu la norme en France pour toutes les constructions neuves, depuis le Grenelle de l'environnement et la réglementation thermique qui en a découlé (actuellement RT 2012).
Complet (complexité)En informatique théorique, et notamment en théorie de la complexité, un problème complet pour une classe de complexité est un problème de décision qui fait partie des problèmes les plus difficiles à résoudre de cette classe. En ce sens, il est un représentant de la classe. C'est une notion centrale en complexité. Elle permet notamment d'établir des inclusions entre les classes en ne considérant qu'un seul problème. Un problème p est dit difficile pour une classe C pour un certain type de réduction s'il existe une réduction de ce type, depuis n'importe quel problème de la classe vers p.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.
BoostingLe boosting est un domaine de l'apprentissage automatique (branche de l'intelligence artificielle). C'est un principe qui regroupe de nombreux algorithmes qui s'appuient sur des ensembles de classifieurs binaires : le boosting optimise leurs performances. Le principe est issu de la combinaison de classifieurs (appelés également hypothèses). Par itérations successives, la connaissance d'un classifieur faible - weak classifier - est ajoutée au classifieur final - strong classifier.
Arbre de décision (apprentissage)L’apprentissage par arbre de décision désigne une méthode basée sur l'utilisation d'un arbre de décision comme modèle prédictif. On l'utilise notamment en fouille de données et en apprentissage automatique. Dans ces structures d'arbre, les feuilles représentent les valeurs de la variable-cible et les embranchements correspondent à des combinaisons de variables d'entrée qui mènent à ces valeurs. En analyse de décision, un arbre de décision peut être utilisé pour représenter de manière explicite les décisions réalisées et les processus qui les amènent.
Energy Starvignette|droite|220px|Logo Energy Star. thumb|right|Le logo Energy Star apposé sur certains équipements. Energy Star est un programme gouvernemental américain chargé de promouvoir les économies d'énergie aux États-Unis et utilisé au Canada, en Australie et en Union européenne. Il a été initié par l'Environmental Protection Agency en 1992 pour réduire les émissions de gaz à effet de serre. Il prend la forme d'un label apposé sur différents produits qui respectent les normes environnementales, tels que les ordinateurs ou encore les éclairages.
Decision ruleIn decision theory, a decision rule is a function which maps an observation to an appropriate action. Decision rules play an important role in the theory of statistics and economics, and are closely related to the concept of a strategy in game theory. In order to evaluate the usefulness of a decision rule, it is necessary to have a loss function detailing the outcome of each action under different states. Given an observable random variable X over the probability space , determined by a parameter θ ∈ Θ, and a set A of possible actions, a (deterministic) decision rule is a function δ : → A.
Ingénierie des caractéristiquesL'ingénierie des caractéristiques (en anglais feature engineering) a un rôle important, notamment dans l’analyse des données. Sans données, les algorithmes d’exploitation et d’apprentissage automatique de données ne seront pas en mesure de fonctionner. En effet, il s’avère qu’en réalité, on ne pourrait réaliser que peu de choses si nous ne disposions que de très peu de caractéristiques afin de pouvoir représenter les données, ou les banques de données, sous-jacentes.
Energy efficiency in British housingDomestic housing in the United Kingdom presents a possible opportunity for achieving the 20% overall cut in UK greenhouse gas emissions targeted by the Government for 2010. However, the process of achieving that drop is proving problematic given the very wide range of age and condition of the UK housing stock. Although carbon emissions from housing have remained fairly stable since 1990 (due to the increase in household energy use having been compensated for by the 'dash for gas'), housing accounted for around 30% of all the UK's carbon dioxide emissions in 2004 (40 million tonnes of carbon) up from 26.