PorositéLa porosité est l'ensemble des vides (pores) d'un matériau, ces vides sont remplis par des fluides (liquides ou gaz). Les matériaux poreux sont très généralement des solides, mais il existe aussi des liquides poreux. La porosité est aussi une grandeur physique définie comme le rapport entre le volume des vides et le volume total d'un milieu poreux, sa valeur est comprise entre 0 et 1 (ou, en pourcentage, entre 0 et 100 %) : où : est la porosité, le volume des pores, et le volume total du matériau, c'est-à-dire la somme du volume de solide et du volume des pores.
Hydrogéologievignette|droite|redresse=1.2|Bloc-diagramme d'un karst recoupé par une rivière. Lhydrogéologie (de hydro-, eau et géologie, étude de la terre), également nommée hydrologie souterraine et plus rarement géohydrologie, est la science qui étudie l'eau souterraine. Son domaine d'étude repose essentiellement sur deux branches des sciences de la Terre, la géologie et l'hydrologie, mais aussi sur de nombreuses autres branches comme la géostatistique, la physique, la chimie, la biologie, la géochimie, l'hydrochimie, la géophysique, l'hydrodynamique, l'hydraulique souterraine, l'analyse numérique ainsi que des techniques de modélisation.
Consolidation (sol)La consolidation est, selon K. von Terzaghi, . Le plus souvent c'est par tassement, sous l'action à long terme des charges statiques, que s'effectue cette compaction avec expulsion de l'eau interstitielle. L'étude du phénomène de consolidation est essentielle dans la compréhension des phénomènes de tassement en construction. Elle est une composante de la mécanique des fondations. Il existe différentes méthodes pour prédire l'amplitude du tassement par consolidation.
Condition aux limites de NeumannEn mathématiques, une condition aux limites de Neumann (nommée d'après Carl Neumann) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs des dérivées que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Neumann sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Condition aux limites de RobinEn mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855-1897), qui a travaillé dans le domaine de la thermodynamique. Elle est également appelée condition aux limites de Fourier. Imposée à une équation différentielle ordinaire ou à une équation aux dérivées partielles, il s'agit d'une relation linéaire entre les valeurs de la fonction et les valeurs de la dérivée de la fonction sur le bord du domaine.
Condition aux limites de DirichletEn mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Cauchy boundary conditionIn mathematics, a Cauchy (koʃi) boundary condition augments an ordinary differential equation or a partial differential equation with conditions that the solution must satisfy on the boundary; ideally so as to ensure that a unique solution exists. A Cauchy boundary condition specifies both the function value and normal derivative on the boundary of the domain. This corresponds to imposing both a Dirichlet and a Neumann boundary condition. It is named after the prolific 19th-century French mathematical analyst Augustin-Louis Cauchy.
Problème aux limitesEn analyse, un problème aux limites est constitué d'une équation différentielle (ou plus généralement aux dérivées partielles) dont on recherche une solution prenant de plus des valeurs imposées en des limites du domaine de résolution. Contrairement au problème analogue dit de Cauchy, où une ou plusieurs conditions en un même endroit sont imposées (typiquement la valeur de la solution et de ses dérivées successives en un point), auquel le théorème de Cauchy-Lipschitz apporte une réponse générale, les problèmes aux limites sont souvent des problèmes difficiles, et dont la résolution peut à chaque fois conduire à des considérations différentes.
Condition aux limites mêléeEn mathématiques, une condition aux limites mêlée ou mixte correspond à la juxtaposition de différentes conditions aux limites sur différentes parties du bord (ou frontière) du domaine dans lequel est posée une équation aux dérivées partielles ou une équation différentielle ordinaire. Par exemple, si l'on considère les vibrations d'une corde élastique de longueur L se déplaçant à une vitesse c dont une extrémité (en 0) est fixe, et l'autre (en L) est attachée à un anneau oscillant librement le long d'une tige droite, on a alors une équation sur un intervalle [0,L].
Perméabilité (matériau)La perméabilité d'un milieu poreux mesure son aptitude à se laisser traverser par un fluide sous l'effet d'un gradient de pression ou d'un champ de gravité. Cette quantité est liée à la loi de Darcy. L'absence de perméabilité s'appelle l'imperméabilité. Une hypothèse sous-jacente à la définition est que l'écoulement dans le milieu est un écoulement en régime de Stokes. Cette hypothèse est utilisée pour établir l'équation de Darcy à partir de la description de la porosité par la méthode de prise de moyenne volumique ou par homogénéisation.