Admittance parametersAdmittance parameters or Y-parameters (the elements of an admittance matrix or Y-matrix) are properties used in many areas of electrical engineering, such as power, electronics, and telecommunications. These parameters are used to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. Y parameters are also known as short circuited admittance parameters.
Complexité descriptiveEn informatique théorique, la complexité descriptive est une branche de la théorie de la complexité et de la théorie des modèles, qui caractérise les classes de complexité en termes de logique qui permet de décrire les problèmes. La complexité descriptive donne un nouveau point de vue car on définit des classes de complexité sans faire appel à une notion de machines comme les machines de Turing. Par exemple la classe NP correspond à l'ensemble des problèmes exprimables en logique du second ordre existentielle : c'est le théorème de Fagin.
Disque d'accrétionUn disque d'accrétion est une structure astrophysique formée par de la matière en orbite autour d'un objet céleste central. Ce corps central est typiquement une jeune étoile, une proto-étoile, une naine blanche, une étoile à neutrons ou un trou noir. La forme de la structure est engendrée par l'action de la force gravitationnelle, attirant le matériel vers le corps central, les différentes vitesses initiales des particules, qui entraînent le matériel en forme de disque, et la dissipation d'énergie en son sein par viscosité, entraînant le matériel en spirale vers l'organe central.
Hydrodynamique des particules lisséesL'hydrodynamique des particules lissées, en anglais Smoothed particle hydrodynamics (SPH), est une méthode de calcul utilisée pour simuler la mécanique des milieux continus, comme la mécanique des solides ou les écoulements de fluides. Elle a été développée par Gingold, Monaghan et Lucy en 1977, initialement pour des problèmes d'astrophysique. Elle a été utilisée dans de nombreux domaines de recherche, incluant l'astrophysique, la balistique, la volcanologie et océanologie.
Quantum complexity theoryQuantum complexity theory is the subfield of computational complexity theory that deals with complexity classes defined using quantum computers, a computational model based on quantum mechanics. It studies the hardness of computational problems in relation to these complexity classes, as well as the relationship between quantum complexity classes and classical (i.e., non-quantum) complexity classes. Two important quantum complexity classes are BQP and QMA.
Courbure moyenneEn mathématiques, on appelle courbure moyenne d'une surface la moyenne des courbures minimale et maximale. Elle est notée (ou encore Km, ou parfois H). C'est un nombre réel, dont le signe dépend du choix fait pour orienter la surface. S'il est relativement simple de définir le rayon de courbure d'une courbe plane, pour une surface les choses se compliquent. On définit alors un analogue comme suit : en un point, on définit un axe, le vecteur normal à la surface. On imagine ensuite un plan tournant sur cet axe.
Complexité de la communicationLa complexité de la communication ou complexité de communication est une notion étudiée en informatique théorique. Le dispositif abstrait classique est le suivant : Alice et Bob ont chacun un message, et ils veulent calculer un nouveau message à partir de leurs messages, en se transmettant un minimum d'information. Par exemple, Alice et Bob reçoivent un mot chacun, et ils doivent décider s'ils ont reçu le même mot ; ils peuvent bien sûr s'envoyer leur mot l'un à l'autre et comparer, mais la question est de minimiser le nombre de messages.
Variété riemannienneEn mathématiques, et plus précisément en géométrie, la variété riemannienne est l'objet de base étudié en géométrie riemannienne. Il s'agit d'une variété, c'est-à-dire un espace courbe généralisant les courbes (de dimension 1) ou les surfaces (de dimension 2) à une dimension n quelconque, et sur laquelle il est possible d'effectuer des calculs de longueur. En termes techniques, une variété riemannienne est une variété différentielle munie d'une structure supplémentaire appelée métrique riemannienne permettant de calculer le produit scalaire de deux vecteurs tangents à la variété en un même point.
Variété kählérienneEn mathématiques, une variété kählérienne ou variété de Kähler est une variété différentielle équipée d'une structure unitaire satisfaisant une condition d'intégrabilité. C'est en particulier une variété riemannienne, une variété symplectique et une variété complexe, ces trois structures étant mutuellement compatibles. Les variétés kählériennes sont un objet d'étude naturel en géométrie différentielle complexe. Elles doivent leur nom au mathématicien Erich Kähler. Plusieurs définitions équivalentes existent.
IndusL’Indus (connu sous le nom de Sindh ou Sindhu dans l’Antiquité, et de སེང་གེ་ཁ་འབབ་ཆུ Senge Khabab en tibétain « qui sort de la bouche du lion » au niveau de sa source) est un fleuve d'Asie qui a donné son nom à l’Inde. Il coule depuis l’Himalaya en direction du sud-ouest et se jette dans la mer d'Oman. L’Indus fait partie des sept rivières sacrées de l'Inde. La source de l’Indus se trouve au Tibet au mont Kailâs ou Gangri, en effet, il porte son nom à partir de la confluence des torrents Sengge et Gar descendant de l’Himalaya et drainant les chaînes du Nganglong Kangri et du Gangdise Shan.