Chaîne de Markovvignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »).
Méthode de Monte-Carlo par chaînes de MarkovLes méthodes de Monte-Carlo par chaînes de Markov, ou méthodes MCMC pour Markov chain Monte Carlo en anglais, sont une classe de méthodes d'échantillonnage à partir de distributions de probabilité. Ces méthodes de Monte-Carlo se basent sur le parcours de chaînes de Markov qui ont pour lois stationnaires les distributions à échantillonner. Certaines méthodes utilisent des marches aléatoires sur les chaînes de Markov (algorithme de Metropolis-Hastings, échantillonnage de Gibbs), alors que d'autres algorithmes, plus complexes, introduisent des contraintes sur les parcours pour essayer d'accélérer la convergence (Monte Carlo Hybride, Surrelaxation successive).
Markov modelIn probability theory, a Markov model is a stochastic model used to model pseudo-randomly changing systems. It is assumed that future states depend only on the current state, not on the events that occurred before it (that is, it assumes the Markov property). Generally, this assumption enables reasoning and computation with the model that would otherwise be intractable. For this reason, in the fields of predictive modelling and probabilistic forecasting, it is desirable for a given model to exhibit the Markov property.
Propriété de Markovvignette|Exemple de processus stochastique vérifiant la propriété de Markov: un mouvement Brownien (ici représenté en 3D) d'une particule dont la position à un instant t+1 ne dépend que de la position précédente à l'instant t. En probabilité, un processus stochastique vérifie la propriété de Markov si et seulement si la distribution conditionnelle de probabilité des états futurs, étant donnés les états passés et l'état présent, ne dépend en fait que de l'état présent et non pas des états passés (absence de « mémoire »).
Brain stimulation rewardBrain stimulation reward (BSR) is a pleasurable phenomenon elicited via direct stimulation of specific brain regions, originally discovered by James Olds and Peter Milner. BSR can serve as a robust operant reinforcer. Targeted stimulation activates the reward system circuitry and establishes response habits similar to those established by natural rewards, such as food and sex. Experiments on BSR soon demonstrated that stimulation of the lateral hypothalamus, along with other regions of the brain associated with natural reward, was both rewarding as well as motivation-inducing.
Système de récompenseLe système de récompense / renforcement aussi appelé système hédonique, est un système fonctionnel fondamental des mammifères, situé dans le cerveau, le long du faisceau médian du télencéphale. Ce système de « récompenses » est indispensable à la survie, car il fournit la motivation nécessaire à la réalisation d'actions ou de comportements adaptés, permettant de préserver l'individu et l'espèce (prise de risque nécessaire à la survie, recherche de nourriture, reproduction, évitement des dangers, etc.).
Application linéaire par morceauxEn mathématiques, une application linéaire par morceaux est une application définie sur un espace topologique composé de facettes affines, à valeurs dans un espace affine et dont les restrictions à chaque facette sont induites par des applications affines. Une telle application est en général supposée continue. Un cas particulier d'application linéaire par morceaux est celui d'une fonction affine par morceaux, définie sur une réunion d'intervalles réels et à valeurs réelles, telle que la restriction à chacun de ces intervalles est donnée par une expression affine.
Tas (informatique)vignette|Un exemple de tas. Il contient 9 éléments. L'élément le plus prioritaire (100) est à la racine. En informatique, un tas (ou monceau au Canada, heap en anglais) est une structure de données de type arbre qui permet de retrouver directement l'élément que l'on veut traiter en priorité. C'est un arbre binaire presque complet ordonné. Un arbre binaire est dit presque complet si tous ses niveaux sont remplis, sauf éventuellement le dernier, qui doit être rempli sur la gauche (cf. Contre-exemples).
Tas binaireEn informatique, un tas binaire est une structure de données utilisée notamment pour implémenter une car elle permet de retirer l’élément de priorité maximale (resp. minimale) d'un ensemble ou d’insérer un élément dans l'ensemble en temps logarithmique tout en conservant la structure du tas binaire. On peut la représenter par un arbre binaire qui vérifie ces deux contraintes : C'est un arbre binaire complet : tous les niveaux sauf le dernier doivent être totalement remplis et si le dernier ne l'est pas totalement, alors il doit être rempli de gauche à droite.
Régularité par morceauxEn mathématiques, les énoncés de certaines propriétés d'analyse et résultats de convergence se réfèrent à des fonctions vérifiant des hypothèses telles que continues par morceaux, dérivables par morceaux Ces fonctions sont regroupées par classes de régularité qui sont autant d'espaces vectoriels emboîtés, appelés « classe C par morceaux » et notés C. vignette|Cette fonction n'est pas continue sur R. En revanche, elle y est continue par morceaux. Une fonction f est continue par morceaux sur le segment [a, b] s’il existe une subdivision σ : a = a0 < .