Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Fractional Fourier transformIn mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition.
Communication optiqueLa communication optique désigne les télécommunications utilisant des moyens, matériaux ou instruments d'optique. Le , le prix Nobel de physique est attribué à l'Américano-Britannique Charles Kao pour « une avancée dans le domaine de la transmission de la lumière dans les fibres pour la communication optique » ainsi que l'Américano-Canadien Willard Boyle et l'Américain George Smith pour « l'invention d'un circuit semi-conducteur d'images, le capteur CCD ». signaux de fumée fibre optique langue des signes t
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Fibre optiqueUne fibre optique est un fil dont l’âme, très fine et faite de verre ou de plastique, a la propriété de conduire la lumière et sert pour la fibroscopie, l'éclairage ou la transmission de données numériques. Elle offre un débit d'information nettement supérieur à celui des câbles coaxiaux et peut servir de support à un réseau « large bande » par lequel transitent aussi bien la télévision, le téléphone, la visioconférence ou les données informatiques.
Tomographic reconstructionTomographic reconstruction is a type of multidimensional inverse problem where the challenge is to yield an estimate of a specific system from a finite number of projections. The mathematical basis for tomographic imaging was laid down by Johann Radon. A notable example of applications is the reconstruction of computed tomography (CT) where cross-sectional images of patients are obtained in non-invasive manner.
Communications optiques en espace libreDans le domaine des télécommunications, les communications optiques en espace libre (en anglais Free Space Optics ou FSO) constituent une technologie optique de communications qui fait appel à la propagation de la lumière (spectre visible ou infrarouge) en espace libre, afin de transmettre des données entre deux points distants. Cette technologie présente un intérêt lorsqu'une connexion physique par le biais de câble ou de fibre optique est inadaptée, en particulier pour des raisons de coûts.
Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Méthodes de Runge-KuttaLes méthodes de Runge-Kutta sont des méthodes d'analyse numérique d'approximation de solutions d'équations différentielles. Elles ont été nommées ainsi en l'honneur des mathématiciens Carl Runge et Martin Wilhelm Kutta, lesquels élaborèrent la méthode en 1901. Ces méthodes reposent sur le principe de l'itération, c'est-à-dire qu'une première estimation de la solution est utilisée pour calculer une seconde estimation, plus précise, et ainsi de suite. Considérons le problème suivant : que l'on va chercher à résoudre en un ensemble discret t < t < .