Assurance qualitéOn désigne par assurance qualité un moyen d'obtenir confiance dans l'assurance de la qualité c'est-à-dire dans l'aptitude de la société ou de l'organisation à satisfaire le niveau de qualité désiré. Le terme « assurance qualité » qui élide les articles naturellement présents dans la langue française est très commun du fait que le concept a été importé (anglicisme) de la langue anglaise où l'on parle de Quality assurance. Le terme assurance a donc ici la valeur de confiance que lui donne la langue anglaise.
Algorithme probabilisteEn algorithmique, un algorithme probabiliste, ou algorithme randomisé, est un algorithme qui utilise une source de hasard. Plus précisément le déroulement de l’algorithme fait appel à des données tirées au hasard. Par exemple à un certain point de l’exécution, on tire un bit 0 ou 1, selon la loi uniforme et si le résultat est 0, on fait une certaine action A et si c'est 1, on fait une autre action. On peut aussi tirer un nombre réel dans l'intervalle [0,1] ou un entier dans un intervalle [i..j].
Algorithme de sélectionEn algorithmique, un algorithme de sélection est une méthode ayant pour but de trouver le k-ième plus petit élément d'un ensemble d'objets (étant donné un ordre et un entier k). La question de la sélection est un problème essentiel en algorithmique, notamment dans la recherche du maximum, du minimum et de la médiane. Plusieurs algorithmes ont été proposés et plusieurs contextes ont été étudiés : algorithmes en ligne, complexité amortie, complexité en moyenne, ensemble d'objet particuliers etc.
Contrôle qualitévignette|Contrôle qualité du nylon, 1954, Malmö. Photographie conservée au musée nordique. Le contrôle qualité est un aspect de la gestion de la qualité. Le contrôle est une opération destinée à déterminer, avec des moyens appropriés, si le produit (y compris, services, documents, code source) contrôlé est conforme ou non à ses spécifications ou exigences préétablies et incluant une décision d'acceptation, de rejet ou de retouche. L'ancienne norme ISO 8402 (maintenant annulée) en donnait la définition suivante : (ISO8402:1994, § 2.
Optimisation non linéaireEn optimisation, vue comme branche des mathématiques, l'optimisation non linéaire (en anglais : nonlinear programming – NLP) s'occupe principalement des problèmes d'optimisation dont les données, i.e., les fonctions et ensembles définissant ces problèmes, sont non linéaires, mais sont aussi différentiables autant de fois que nécessaire pour l'établissement des outils théoriques, comme les conditions d'optimalité, ou pour la bonne marche des algorithmes de résolution qui y sont introduits et analysés.
Chromosome (genetic algorithm)In genetic algorithms (GA), or more general, evolutionary algorithms (EA), a chromosome (also sometimes called a genotype) is a set of parameters which define a proposed solution of the problem that the evolutionary algorithm is trying to solve. The set of all solutions, also called individuals according to the biological model, is known as the population. The genome of an individual consists of one, more rarely of several, chromosomes and corresponds to the genetic representation of the task to be solved.
Crossover (genetic algorithm)In genetic algorithms and evolutionary computation, crossover, also called recombination, is a genetic operator used to combine the genetic information of two parents to generate new offspring. It is one way to stochastically generate new solutions from an existing population, and is analogous to the crossover that happens during sexual reproduction in biology. Solutions can also be generated by cloning an existing solution, which is analogous to asexual reproduction. Newly generated solutions may be mutated before being added to the population.
Tri par sélectionLe tri par sélection (ou tri par extraction) est un algorithme de tri par comparaison. Cet algorithme est simple, mais considéré comme inefficace car il s'exécute en temps quadratique en le nombre d'éléments à trier, et non en temps pseudo linéaire. Sur un tableau de n éléments (numérotés de 0 à n-1 , attention un tableau de 5 valeurs (5 cases) sera numéroté de 0 à 4 et non de 1 à 5), le principe du tri par sélection est le suivant : rechercher le plus petit élément du tableau, et l'échanger avec l'élément d'indice 0 ; rechercher le second plus petit élément du tableau, et l'échanger avec l'élément d'indice 1 ; continuer de cette façon jusqu'à ce que le tableau soit entièrement trié.
Optimisation SDPEn mathématiques et en informatique théorique, l'optimisation SDP ou semi-définie positive, est un type d'optimisation convexe, qui étend l'optimisation linéaire. Dans un problème d'optimisation SDP, l'inconnue est une matrice symétrique que l'on impose d'être semi-définie positive. Comme en optimisation linéaire, le critère à minimiser est linéaire et l'inconnue doit également satisfaire une contrainte affine. L'optimisation SDP se généralise par l'optimisation conique, qui s'intéresse aux problèmes de minimisation d'une fonction linéaire sur l'intersection d'un cône et d'un sous-espace affine.
Algorithme mémétiqueLes algorithmes mémétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode de résolution pour résoudre le problème de manière exacte en un temps raisonnable. Les algorithmes mémétiques sont nés d'une hybridation entre les algorithmes génétiques et les algorithmes de recherche locale. Ils utilisent le même processus de résolution que les algorithmes génétiques mais utilisent un opérateur de recherche locale après celui de mutation.