DifférentielleEn analyse fonctionnelle et vectorielle, on appelle différentielle d'ordre 1 d'une fonction en un point (ou dérivée de cette fonction au point ) la partie linéaire de l'accroissement de cette fonction entre et lorsque tend vers 0. Elle généralise aux fonctions de plusieurs variables la notion de nombre dérivé d'une fonction d'une variable réelle, et permet ainsi d'étendre celle de développements limités. Cette différentielle n'existe pas toujours, et une fonction possédant une différentielle en un point est dite différentiable en ce point.
Forme différentielleEn géométrie différentielle, une forme différentielle est la donnée d'un champ d'applications multilinéaires alternées sur les espaces tangents d'une variété différentielle possédant une certaine régularité. Le degré des formes différentielles désigne le degré des applications multilinéaires. La différentielle d'une fonction numérique peut être regardée comme un champ de formes linéaires : c'est le premier exemple de formes différentielles.
Clé artificielleDans le domaine des bases de données, une clé artificielle (en opposition à une clé naturelle), aussi parfois appelée clé de remplacement (de l'anglais surrogate key) désigne un ensemble de données adjointes aux données d'une table pour les indexer. La génération de la clé artificielle est effectuée par le concepteur de la table. Toute clé indexant chaque ligne de manière unique est valable. Parmi les méthodes de génération courantes de clé artificielle nous pouvons citer les clés incrémentales (les lignes sont numérotées au fur et à mesure de leur introduction dans la table).
Calcul différentielalt=|vignette| Le graphe d'une fonction arbitraire (bleu). Graphiquement, la dérivée de en est la pente de la droite orange (tangente à la courbe en ). En mathématiques, le calcul différentiel est un sous-domaine de l'analyse qui étudie les variations locales des fonctions. C'est l'un des deux domaines traditionnels de l'analyse, l'autre étant le calcul intégral, utilisé notamment pour calculer l'aire sous une courbe.