Radioactivité βLa radioactivité β, radioactivité bêta ou émission bêta (symbole β) est, à l'origine, un type de désintégration radioactive dans laquelle une particule bêta (un électron ou un positon) est émise. On parle de désintégration bêta moins (β) ou bêta plus (β) selon qu'il s'agit de l'émission d'un électron (particule chargée négativement) ou d'un positon (particule chargée positivement). L'émission β est notamment ce qui permet la conversion d'un neutron en proton, par exemple dans les cas de transmutation comme du tritium (T) qui se transforme en hélium 3 (He) : ⟶ + e + .
Double désintégration bêtaLe processus de double désintégration bêta est un mode de décroissance nucléaire, qui consiste en deux désintégrations bêta simultanées dans un même noyau atomique. Il résulte généralement de ce processus l'émission de deux neutrinos, mais certaines théories prédisent une double désintégration sans émission de neutrinos, bien qu'un tel évènement n'ait jamais été observé. La double désintégration bêta avec émission de neutrinos (ββ2ν) est un mode de décroissance autorisé par le modèle standard.
Univers observableL'Univers observable est, en cosmologie, la partie visible de notre Univers. Il est donc une boule dont la limite est située à l'horizon cosmologique et dont la Terre constitue le centre. C'est ainsi une notion relative, d'autres observateurs situés ailleurs dans l'Univers n'ont pas la même boule observable, mais une similaire de même rayon.
Neutrinoless double beta decayThe neutrinoless double beta decay (0νββ) is a commonly proposed and experimentally pursued theoretical radioactive decay process that would prove a Majorana nature of the neutrino particle. To this day, it has not been found. The discovery of the neutrinoless double beta decay could shed light on the absolute neutrino masses and on their mass hierarchy (Neutrino mass). It would mean the first ever signal of the violation of total lepton number conservation. A Majorana nature of neutrinos would confirm that the neutrino is its own antiparticle.
Astronomie neutrinoL’astronomie neutrino (parfois astronomique neutrinique) est la branche de l'astronomie qui observe les objets célestes à l'aide de détecteurs de neutrinos, des leptons neutres de faible masse décrits par la théorie électrofaible. Étant donné leur très faible interaction avec la matière, les neutrinos ont la capacité de traverser des distances cosmologiques sans dévier de leur trajectoire initiale, faisant d'eux d'excellents messagers astronomiques permettant de retracer directement l'origine de leur lieu de production.
Neutrino stérileLe neutrino stérile est un type hypothétique de neutrino qui n'interagit via aucune des interactions fondamentales du modèle standard de la physique des particules, hormis la gravité. C'est un neutrino dextrogyre (autrement dit à chiralité droite) léger ou bien un antineutrino lévogyre qui pourrait s'ajouter au modèle standard, et prendre part aux phénomènes tels que le mélange des neutrinos. Le terme neutrino stérile est utilisé pour le distinguer du neutrino actif du modèle standard, qui dispose d'une charge pour l'interaction faible.
Modèle ΛCDMEn cosmologie, le (se prononce « Lambda CDM », qui signifie en anglais Lambda - Cold Dark Matter, c'est-à-dire le modèle « lambda - matière noire froide ») ou modèle de concordance est un modèle cosmologique du Big Bang paramétré par une constante cosmologique notée par la lettre grecque Λ et associée à l'énergie sombre.
Problème des neutrinos solairesLe problème des neutrinos solaires est apparu récemment avec la création de structures permettant la détection des neutrinos, et en particulier Super-Kamiokande dans les années 1990 au Japon. Il provient d'une quantité trop faible de neutrinos détectés par rapport à la valeur théorique. Des notions de physique quantique sont nécessaires pour comprendre ce problème. Les neutrinos et antineutrinos sont des particules élémentaires de masse très faible (elle était souvent supposée nulle au début des recherches), introduits dans la théorie de la physique quantique pour assurer la conservation de l'énergie dans les processus de réaction nucléaire.
CosmologieLa cosmologie est une branche de la physique qui regroupe les études scientifiques portant sur les propriétés de l'univers dans son ensemble, sa structure. La cosmologie permet d'étudier l'origine et l'évolution de l'univers. Les théories et les hypothèses permettent d'établir des modèles, qui sont testés avec des observations. La théorie dominante sur l'origine et l'évolution de notre Univers est la théorie du Big Bang. La Terre est une planète de taille relativement modeste (environ km de rayon), en orbite autour d'une étoile de la Séquence principale, le Soleil.
Big BangLe Big Bang (« Grand Boum ») est un modèle cosmologique utilisé par les scientifiques pour décrire l'origine et l'évolution de l'Univers. De façon générale, le terme « Big Bang » est associé à toutes les théories qui décrivent notre Univers comme issu d'une dilatation rapide. Par extension, il est également associé à cette époque dense et chaude qu’a connue l’Univers il y a d’années, sans que cela préjuge de l’existence d’un « instant initial » ou d’un commencement à son histoire.