Théorème du codage de canalEn théorie de l'information, le théorème du codage de canal aussi appelé deuxième théorème de Shannon montre qu'il est possible de transmettre des données numériques sur un canal bruité avec un taux d'erreur arbitrairement faible si le débit est inférieur à une certaine limite propre au canal. Ce résultat publié par Claude Shannon en 1948 est fondé sur des travaux antérieurs de Harry Nyquist et Ralph Hartley. La première preuve rigoureuse fut établie par Amiel Feinstein en 1954.
Codes de parité à faible densitéDans la théorie de l'information, un contrôle de parité de faible densité LDPC est un code linéaire correcteur d'erreur, permettant la transmission d'information sur un canal de transmission bruité. LDPC est construit en utilisant un graphe biparti clairsemé. Les codes LDPC ont une capacité approchant la limite théorique. À l'aide de techniques itératives de propagation d'information sur la donnée transmise et à décoder, les codes LDPC peuvent être décodés en un temps proportionnel à leur longueur de bloc.
Complexité de KolmogorovEn informatique théorique et en mathématiques, plus précisément en théorie de l'information, la complexité de Kolmogorov, ou complexité aléatoire, ou complexité algorithmique d'un objet — nombre, , chaîne de caractères — est la taille du plus petit algorithme (dans un certain langage de programmation fixé) qui engendre cet objet. Elle est nommée d'après le mathématicien Andreï Kolmogorov, qui publia sur le sujet dès 1963. Elle est aussi parfois nommée complexité de Kolmogorov-Solomonoff.
Entropie de ShannonEn théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
Complexité en espaceEn algorithmique, la complexité en espace est une mesure de l'espace utilisé par un algorithme, en fonction de propriétés de ses entrées. L'espace compte le nombre maximum de cases mémoire utilisées simultanément pendant un calcul. Par exemple le nombre de symboles qu'il faut conserver pour pouvoir continuer le calcul. Usuellement l'espace que l'on prend en compte lorsque l'on parle de l'espace nécessaire pour des entrées ayant des propriétés données est l'espace nécessaire le plus grand parmi ces entrées ; on parle de complexité en espace dans le pire cas.
Code quantiqueLes codes quantiques sont l'équivalent quantique des codes correcteurs. La théorie des codes quantiques est donc une branche de l'information quantique qui s'applique à protéger l'information quantique des effets de la décohérence. La correction d'erreur quantique est un élément essentiel du calcul tolérant aux fautes qui doit gérer non seulement les erreurs dans l'information stockée, mais aussi dans l'application des portes quantiques, la préparation de nouveaux états ainsi que dans les opérations de mesure.
Théorème flot-max/coupe-minLe théorème flot-max/coupe-min (ou max flow/min cut en anglais) est un théorème important en optimisation et en théorie des graphes. Il stipule qu'étant donné un graphe de flots, le flot maximum pouvant aller de la source au puits est égal à la capacité minimale devant être retirée du graphe afin d'empêcher qu'aucun flot ne puisse passer de la source au puits. Ce théorème est un cas particulier du théorème de dualité en optimisation linéaire et généralise le théorème de Kőnig, le théorème de Hall (dans les graphes bipartis) et le théorème de Menger (dans les graphes quelconques).
Parity bitA parity bit, or check bit, is a bit added to a string of binary code. Parity bits are a simple form of error detecting code. Parity bits are generally applied to the smallest units of a communication protocol, typically 8-bit octets (bytes), although they can also be applied separately to an entire message string of bits. The parity bit ensures that the total number of 1-bits in the string is even or odd. Accordingly, there are two variants of parity bits: even parity bit and odd parity bit.
Advanced Audio CodingAdvanced Audio Coding (AAC, « encodage audio avancé ») est un algorithme de compression audio avec perte de données ayant pour but d’offrir un meilleur rapport qualité sur débit binaire que le format plus ancien MPEG-1/2 Audio Layer 3, plus connu sous le nom de MP3. Pour ces qualités, il est choisi par différentes entreprises dont Apple ou RealNetworks. La RNT (Radio numérique terrestre utilise le système de radio diffusion DAB+ (version améliorée du DAB, Digital Audio Broadcasting) qui intègre une version avancée du codec AAC : HE-AAC version 2, aussi appelé eAAC+, et défini dans la norme MPEG-4 Part 3.
Convolutional codeIn telecommunication, a convolutional code is a type of error-correcting code that generates parity symbols via the sliding application of a boolean polynomial function to a data stream. The sliding application represents the 'convolution' of the encoder over the data, which gives rise to the term 'convolutional coding'. The sliding nature of the convolutional codes facilitates trellis decoding using a time-invariant trellis. Time invariant trellis decoding allows convolutional codes to be maximum-likelihood soft-decision decoded with reasonable complexity.