DiscrétisationEn mathématiques appliquées, la discrétisation est la transposition d'un état (fonction, modèle, variable, équation) en un équivalent . Ce procédé constitue en général une étape préliminaire à la résolution numérique d'un problème ou sa programmation sur machine. Un cas particulier est la dichotomisation où le nombre de classes discrètes est 2, où on peut approcher une variable continue en une variable binaire. La discrétisation est aussi reliée aux mathématiques discrètes, et compte parmi les composantes importantes de la programmation granulaire.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Neurone formelthumb|Représentation d'un neurone formel (ou logique). Un neurone formel, parfois appelé neurone de McCulloch-Pitts, est une représentation mathématique et informatique d'un neurone biologique. Le neurone formel possède généralement plusieurs entrées et une sortie qui correspondent respectivement aux dendrites et au cône d'émergence du neurone biologique (point de départ de l'axone). Les actions excitatrices et inhibitrices des synapses sont représentées, la plupart du temps, par des coefficients numériques (les poids synaptiques) associés aux entrées.
Code d'effacementEn théorie de l'information, un code d'effacement est un code de correction d'erreur directe pour le canal binaire d'effacement qui transforme un message composé de symboles en un message plus long composé de symboles tel que le message original peut être retrouvé à partir d'un sous-ensemble de ces symboles. La fraction est appelé « débit du code ». La fraction , où représente le nombre de symboles requis pour restaurer le message est appelée efficacité de la réception.
Ambiguity functionIn pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency , . It represents the distortion of a returned pulse due to the receiver matched filter (commonly, but not exclusively, used in pulse compression radar) of the return from a moving target. The ambiguity function is defined by the properties of the pulse and of the filter, and not any particular target scenario.
Code de HammingUn code de Hamming est un code correcteur linéaire. Il permet la détection et la correction automatique d'une erreur si elle ne porte que sur une lettre du message. Un code de Hamming est parfait : pour une longueur de code donnée il n'existe pas d'autre code plus compact ayant la même capacité de correction. En ce sens son rendement est maximal. Il existe une famille de codes de Hamming ; le plus célèbre et le plus simple après le code de répétition binaire de dimension trois et de longueur un est sans doute le code binaire de paramètres [7,4,3].
Domaine de collisionUn domaine de collision est une zone logique d'un réseau informatique où les paquets de données peuvent entrer en collision entre eux, en particulier avec le protocole de communication Ethernet. Un domaine de collision peut être un seul segment de câble Ethernet, un seul concentrateur ou même un réseau complet de concentrateurs et de répéteurs. Généralement, un concentrateur forme un seul domaine de collision alors qu'un commutateur ou un routeur en crée un par port, ce qui réduit les risques de collision.
Rétropropagation du gradientEn intelligence artificielle, plus précisément en apprentissage automatique, la rétropropagation du gradient est une méthode pour entraîner un réseau de neurones. Elle consiste à mettre à jour les poids de chaque neurone de la dernière couche vers la première. Elle vise à corriger les erreurs selon l'importance de la contribution de chaque élément à celles-ci. Dans le cas des réseaux de neurones, les poids synaptiques qui contribuent plus à une erreur seront modifiés de manière plus importante que les poids qui provoquent une erreur marginale.
Algorithme du gradientLalgorithme du gradient, aussi appelé algorithme de descente de gradient, désigne un algorithme d'optimisation différentiable. Il est par conséquent destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des n-uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué dans la direction opposée au gradient, de manière à faire décroître la fonction.
Segment de réseauthumb|upright=1.5|Exemple de réseau informatique comprenant deux segments. Un segment de réseau est une portion d'un réseau informatique dans lequel chaque appareil communique en utilisant la même couche physique. Les appareils qui étendent cette couche physique, comme les répéteurs ou les concentrateurs réseau (hub), réalisent une extension du segment. Toutefois, les appareils qui fonctionnent au niveau de la couche de liaison de données ou au-dessus, créent de nouvelles couches physiques, et ainsi, réalisent une création de segment plutôt qu'une extension de segment.