Total variation denoisingIn signal processing, particularly , total variation denoising, also known as total variation regularization or total variation filtering, is a noise removal process (filter). It is based on the principle that signals with excessive and possibly spurious detail have high total variation, that is, the integral of the absolute is high. According to this principle, reducing the total variation of the signal—subject to it being a close match to the original signal—removes unwanted detail whilst preserving important details such as .
Famillevignette|Le repas familial (gravure sur bois, ). vignette|La famille de Philippe V d'Espagne (en 1723). vignette|Le portrait de famille est une des formes picturales répandues d'abord dans les familles nobles puis chez les familles bourgeoises (ici la famille Souchay vers 1805). vignette|Un peu de conversation, huile sur toile de Lilly Martin Spencer, vers 1851-1852 vignette|Peinture à l'huile de Jean de Francqueville intitulée . thumb|Portrait d'un chef camerounais et de sa famille (entre 1910 et 1930).
Médecine traditionnelleSelon la définition officielle de l'OMS, la médecine traditionnelle « se rapporte aux pratiques, méthodes, savoirs et croyances en matière de santé qui impliquent l’usage à des fins médicales de plantes, de parties d’animaux et de minéraux, de thérapies spirituelles, de techniques et d’exercices manuels – séparément ou en association – pour soigner, diagnostiquer et prévenir les maladies ou préserver la santé ».
Covariance matrixIn probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself). Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions.
Théorème de Gauss-MarkovEn statistiques, le théorème de Gauss–Markov, nommé ainsi d'après Carl Friedrich Gauss et Andrei Markov, énonce que dans un modèle linéaire dans lequel les erreurs ont une espérance nulle, sont non corrélées et dont les variances sont égales, le meilleur estimateur linéaire non biaisé des coefficients est l'estimateur des moindres carrés. Plus généralement, le meilleur estimateur linéaire non biaisé d'une combinaison linéaire des coefficients est son estimateur par les moindres carrés.
Postulats de la mécanique quantiquevignette|Participants au Congrès Solvay de 1927 sur la mécanique quantique Cet article traite des postulats de la mécanique quantique. La description du monde microscopique que fournit la mécanique quantique s'appuie sur une vision radicalement nouvelle, et s'oppose en cela à la mécanique classique. Elle repose sur des postulats. S'il existe un très large consensus entre les physiciens sur la manière de réaliser les calculs qui permettent de rendre compte des phénomènes quantiques et de prévoir leur évolution, il n'existe pas en revanche de consensus sur une manière unique de les expliquer aux étudiants.
Frequentist inferenceFrequentist inference is a type of statistical inference based in frequentist probability, which treats “probability” in equivalent terms to “frequency” and draws conclusions from sample-data by means of emphasizing the frequency or proportion of findings in the data. Frequentist-inference underlies frequentist statistics, in which the well-established methodologies of statistical hypothesis testing and confidence intervals are founded. The primary formulation of frequentism stems from the presumption that statistics could be perceived to have been a probabilistic frequency.
Ridge regressionRidge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. It has been used in many fields including econometrics, chemistry, and engineering. Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems. It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters.
Problème inversevignette|une somme de plusieurs nombres donne le nombre 27, mais peut-on les deviner à partir de 27 ? En science, un problème inverse est une situation dans laquelle on tente de déterminer les causes d'un phénomène à partir des observations expérimentales de ses effets. Par exemple, en sismologie, la localisation de l'origine d'un tremblement de terre à partir de mesures faites par plusieurs stations sismiques réparties sur la surface du globe terrestre est un problème inverse.
Fonction à variation bornéeEn analyse, une fonction est dite à variation bornée quand elle vérifie une certaine condition de régularité. Cette condition a été introduite en 1881 par le mathématicien Camille Jordan pour étendre le théorème de Dirichlet sur la convergence des séries de Fourier. Soit f une fonction définie sur un ensemble totalement ordonné T et à valeurs dans un espace métrique (E, d). Pour toute subdivision σ = (x, x, ...