Nombres de FeigenbaumEn mathématiques, les nombres de Feigenbaum ou constantes de Feigenbaum sont deux nombres réels découverts par le mathématicien Mitchell Feigenbaum en 1975. Tous deux expriment des rapports apparaissant dans les diagrammes de bifurcation de la théorie du chaos. vignette|droite|Exemple de diagramme de bifurcation (en abscisse, r désigne le paramètre μ). Les diagrammes de bifurcation concernent les valeurs limites prises par les suites de type où f est une fonction réelle, définie positive et trois fois dérivable sur [0, 1] et possédant un maximum unique sur cet intervalle (c’est-à-dire sans maximum relatif), noté f.
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Internal standardIn a chemical analysis, the internal standard method involves adding the same amount of a chemical substance to each sample and calibration solution. The internal standard responds proportionally to changes in the analyte and provides a similar, but not identical, measurement signal. It must also be absent from the sample matrix to ensure there is no other source of the internal standard present. Taking the ratio of analyte signal to internal standard signal and plotting it against the analyte concentrations in the calibration solutions will result in a calibration curve.
Théorie des modèlesLa théorie des modèles est une branche de la logique mathématique qui traite de la construction et de la classification des structures. Elle définit en particulier les modèles des théories axiomatiques, l'objectif étant d'interpréter les structures syntaxiques (termes, formules, démonstrations...) dans des structures mathématiques (ensemble des entiers naturels, groupes, univers...) de façon à leur associer des concepts de nature sémantique (comme le sens ou la vérité).
Mathematical constantA mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a special symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as e and pi occurring in such diverse contexts as geometry, number theory, statistics, and calculus. Some constants arise naturally by a fundamental principle or intrinsic property, such as the ratio between the circumference and diameter of a circle (pi).
StructureA structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as biological organisms, minerals and chemicals. Abstract structures include data structures in computer science and musical form. Types of structure include a hierarchy (a cascade of one-to-many relationships), a network featuring many-to-many links, or a lattice featuring connections between components that are neighbors in space.
Microscope à force atomiquethumb|350px|Le premier microscope à force atomique du monde, au musée de la Science de Londres. Le microscope à force atomique (AFM pour atomic force microscope) est un type de microscope à sonde locale permettant de visualiser la topographie de la surface d'un échantillon. Inventé en 1985, par Gerd Binnig, Calvin Quate et Christoph Gerber, ce type de microscopie repose essentiellement sur l'analyse d'un objet point par point au moyen d'un balayage via une sonde locale, assimilable à une pointe effilée.
Théorie des modèles finisLa théorie des modèles finis est un sous-domaine de la théorie des modèles. Cette dernière est une branche de la logique mathématique qui traite de la relation entre un langage formel (la syntaxe) et ses interprétations (ses sémantiques). La théorie des modèles finis est la restriction de la théorie des modèles aux interprétations de structures finies, donc qui sont définies sur un ensemble (un univers) fini. Ses applications principales sont la théorie des bases de données, la complexité descriptive et la théorie des langages formels.
Force (physique)Une force modélise, en physique classique, une action mécanique exercée sur un objet ou une partie d'un objet par un autre objet ou partie d'objet. L'ensemble des forces appliquées à un objet a pour effet de lui communiquer une accélération ou de le déformer. Introduit antérieurement , le concept de force a été précisé en 1684 par Isaac Newton, qui en a fait l'un des fondements de la mécanique newtonienne. Le concept de force est ancien, mais il a mis longtemps à obtenir une nouvelle définition utilisable.
Méthode de GalerkineEn mathématiques, dans le domaine de l'analyse numérique, les méthodes de Galerkine sont une classe de méthodes permettant de transformer un problème continu (par exemple une équation différentielle) en un problème discret. Cette approche est attribuée aux ingénieurs russes Ivan Boubnov (1911) et Boris Galerkine (1913). Cette méthode est couramment utilisée dans la méthode des éléments finis. On part de la formulation faible du problème. La solution appartient à un espace fonctionnel satisfaisant des propriétés de régularité bien définies.