Codage neuronalLe codage neuronal désigne, en neurosciences, la relation hypothétique entre le stimulus et les réponses neuronales individuelles ou globales. C'est une théorie sur l'activité électrique du système nerveux, selon laquelle les informations, par exemple sensorielles, numériques ou analogiques, sont représentées dans le cerveau par des réseaux de neurones. Le codage neuronal est lié aux concepts du souvenir, de l'association et de la mémoire sensorielle.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Cortex cérébralLe cortex cérébral (ou écorce cérébrale), d'origine prosencéphalique, est la substance grise périphérique des hémisphères cérébraux. Il se compose de trois couches (pour l'archi- et le paléocortex) à six couches (pour le néocortex) renfermant différentes classes de neurones, d'interneurones et de cellules gliales. Le cortex peut être segmenté en différentes aires selon des critères cytoarchitectoniques (nombre de couches, type de neurones), de leur connexions, notamment avec le thalamus, et de leur fonction.
Système auditifLe système auditif est le système sensoriel du sens de l'ouïe. Il est composé de deux systèmes: le système auditif périphérique et le système auditif central. Dans le système auditif périphérique, on retrouve l’oreille externe, moyenne et interne. Le système auditif central comprend le nerf auditif jusqu’au cortex auditif. Le long de son trajet de l'extérieur jusqu'au cerveau antérieur, l'information sonore est conservée et en même temps modifiée de diverses manières.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Rythme cérébralUn rythme cérébral (appelé aussi activité neuro-électrique) désigne l'oscillation électromagnétique émise par le cerveau des êtres humains, mais également de tout être vivant. Le cortex frontal qui permet la cognition, la logique et le raisonnement est composé de neurones qui sont reliés entre eux par des synapses permettant la neurotransmission. Mesurables en volt et en hertz, ces ondes sont de très faible amplitude : de l'ordre du microvolt (chez l'être humain), elles ne suivent pas toujours une sinusoïde régulière.
Communication animaleLa communication animale regroupe l'ensemble des échanges d'information entre des individus d'une même espèce (communication intraspécifique) ou d'espèces différentes (communication extraspécifique) chez les animaux. Les animaux communiquent entre eux pour différentes raisons : séduction du partenaire, compétition pour les ressources, recherche de nourriture. Ils utilisent pour cela un signal ou un message (support physique de l'information), comme une odeur, un son, un mouvement, ou un signal électrique.
Cortex auditifalt=Cortex auditifs primaire et secondaire|vignette|Cortex auditif. Le cortex auditif est la partie du cerveau qui analyse les informations auditives, c'est-à-dire les informations extraites des sons par l'ouïe. Il occupe la partie supérieure du lobe temporal. Comme d'autres aires sensorielles, le cortex auditif est organisé hiérarchiquement en aires primaires, secondaires et tertiaires qui sont anatomiquement organisées de façons concentriques dans les parties supérieures et moyennes du lobe temporal : le cortex primaire, localisé au niveau du gyrus de Heschl est entouré des aires secondaires, elles-mêmes encerclées d'aires tertiaires et associatives.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.