RéfractionEn physique des ondes, la réfraction désigne la courbe d'une onde (notamment optique, acoustique ou sismologique) à l'interface entre deux milieux aux vitesses de phase différentes sur le plan chimique ou physique (densité, impédance, température...) La réfraction se traduit par une modification de l'orientation : du front d'onde : c'est la ligne que décrit une vague dans l'eau (optique physique et sismologie) ; du rayon : c'est la direction de propagation de l'onde, perpendiculaire au front d'onde (optique géométrique).
Champ conservatifUn champ de vecteurs est dit à circulation conservative (ou irrotationnel) si sa circulation sur toute courbe fermée est nulle (son rotationnel est alors nul, et réciproquement). Sous certaines conditions relatives au domaine de définition et à la régularité du champ, on peut dériver le potentiel de ce champ, fonction scalaire qui en permet une représentation alternative. De même, un champ de vecteurs est dit à flux conservatif si son flux sur toute surface fermée est nul (sa divergence est alors nulle, et réciproquement).
Auger electron spectroscopyAuger electron spectroscopy (AES; pronounced oʒe in French) is a common analytical technique used specifically in the study of surfaces and, more generally, in the area of materials science. It is a form of electron spectroscopy that relies on the Auger effect, based on the analysis of energetic electrons emitted from an excited atom after a series of internal relaxation events. The Auger effect was discovered independently by both Lise Meitner and Pierre Auger in the 1920s.
Lentille à gradient d'indiceUne lentille à gradient d'indice est un type de lentille dont le matériau est un verre à gradient d'indice, c'est-à-dire que l'indice de réfraction du verre est fonction de la position dans ce verre. Les propriétés de ces lentilles les rendent très utiles dans des domaines tels que les télécommunications pour le couplage d'un faisceau lumineux dans une fibre optique, ou tels que l'imagerie pour leur capacité à corriger les aberrations. Cela est aussi appelé Lentille de Lüneberg.
Cristallographie aux rayons XLa cristallographie aux rayons X, radiocristallographie ou diffractométrie de rayons X (DRX, on utilise aussi souvent l'abréviation anglaise XRD pour X-ray diffraction) est une technique d'analyse fondée sur la diffraction des rayons X par la matière, particulièrement quand celle-ci est cristalline. La diffraction des rayons X est une diffusion élastique, c'est-à-dire sans perte d'énergie des photons (longueurs d'onde inchangées), qui donne lieu à des interférences d'autant plus marquées que la matière est ordonnée.
Interféromètre de Michelsonvignette|upright=2|Exemple d'interféromètre de Michelson présent dans les laboratoires de l'Institut d'Optique. L'interféromètre de Michelson (parfois appelé simplement « Michelson » par métonymie) est un dispositif optique inventé par Albert Abraham Michelson et Edward Morley qui produit des interférences par division d'amplitude (mais aussi par division du front d'onde dans le cas d'une source ponctuelle). Il est constitué essentiellement de deux miroirs et d'une lame semi-réfléchissante.
InterférenceEn mécanique ondulatoire, les interférences sont la combinaison de deux ondes susceptibles d'interagir. Ce phénomène apparaît souvent en optique avec les ondes lumineuses, mais il s'obtient également avec des ondes électromagnétiques d'autres longueurs d'onde, ou avec d'autres types d'ondes comme des ondes sonores. À savoir aussi, le phénomène d'interférence se produit uniquement lors de la combinaison de deux ondes de même fréquence. L' onde se modélise par une fonction , étant la position dans l'espace et t étant le temps.
OptiqueL'optique est la branche de la physique qui traite de la lumière, de son comportement et de ses propriétés, du rayonnement électromagnétique à la vision en passant par les systèmes utilisant ou émettant de la lumière. Du fait de ses propriétés ondulatoires, le domaine de la lumière peut couvrir le lointain UV jusqu'au lointain IR en passant par les longueurs d'onde visibles. Ces propriétés recouvrent alors le domaine des ondes radio, micro-ondes, des rayons X et des radiations électromagnétiques.
Microscopie à super-résolutionLa microscopie à super-résolution est un ensemble de techniques permettant d'imager en microscopie optique des objets à une résolution à l’échelle nanométrique. Elle se démarque par le fait que la résolution obtenue n'est plus limitée par le phénomène de diffraction. Du fait de la diffraction de la lumière, la résolution d’un microscope optique conventionnel est en principe limitée, indépendamment du capteur utilisé et des aberrations ou imperfections des lentilles.
European Synchrotron Radiation FacilityL'European Synchrotron Radiation Facility, en abrégé ESRF (en français « Installation européenne de rayonnement synchrotron »), société civile de droit français créée le 12 janvier 1989, est un des plus importants synchrotrons actuellement en fonctionnement dans le monde avec l'APS du Laboratoire national d'Argonne aux États-Unis, dans la préfecture de Hyōgo au Japon, et le Grand collisionneur de hadrons (LHC) du CERN proche de Genève.