Espace des phasesdroite|vignette| Trajectoires dans l'espace des phases pour un pendule simple. L'axe X correspond à la position du pendule, et l'axe Y sa vitesse. Dans la théorie des systèmes dynamiques, l'espace des phases (ou espace d'état) d'un système est l'espace mathématique dans lequel tous les états possibles du système sont représentés ; chaque état possible correspondant à un point unique dans l'espace des phases. Pour un système mécanique, l'espace des phases se compose généralement de toutes les valeurs possibles des variables de position et d'impulsion représentant le système.
Paquet d'ondeEn physique, un paquet d'onde, ou train d'onde, est une enveloppe ou un paquet contenant un nombre arbitraire d'ondes élémentaires. Il existe aussi des demi paquets d'onde, qui sont des paquets d'onde scindés en quadrature de phase. En mécanique quantique, le paquet d'onde possède une signification particulière : il est interprété comme étant une onde de probabilité qui décrit la probabilité pour une particule (ou des particules) dans un état donné d'avoir une position et une quantité de mouvement données.
Optical phase spaceIn quantum optics, an optical phase space is a phase space in which all quantum states of an optical system are described. Each point in the optical phase space corresponds to a unique state of an optical system. For any such system, a plot of the quadratures against each other, possibly as functions of time, is called a phase diagram. If the quadratures are functions of time then the optical phase diagram can show the evolution of a quantum optical system with time.
Théorie de l'onde pilotevignette|Expérience de Couder l'interprétation de l'onde pilote dans l'expérience des fentes d'Young. La théorie de l'onde pilote est une théorie développée par Louis de Broglie dans les années 1926-1927, visant à donner une interprétation à la dualité onde-corpuscule. Cette théorie découle des idées présentées dans sa célèbre thèse de 1924 (voir hypothèse de De Broglie) qui fut à l'origine de la mécanique ondulatoire, et a été présentée en 1927 sous le titre de « théorie de la double solution ».
Équation de SchrödingerL'équation de Schrödinger, conçue par le physicien autrichien Erwin Schrödinger en 1925, est une équation fondamentale en mécanique quantique. Elle décrit l'évolution dans le temps d'une particule massive non relativiste, et remplit ainsi le même rôle que la relation fondamentale de la dynamique en mécanique classique. Au début du , il était devenu clair que la lumière présentait une dualité onde-corpuscule, c'est-à-dire qu'elle pouvait se manifester, selon les circonstances, soit comme une particule, le photon, soit comme une onde électromagnétique.
Théorème adiabatiqueLe théorème adiabatique est un concept important en mécanique quantique. Sa forme originelle, énoncée en 1928 par Max Born et Vladimir Fock, peut être énoncée de la manière suivante : Un système physique est maintenu dans son état propre instantané si une perturbation donnée agit sur lui suffisamment lentement et s'il y a un intervalle significatif entre la valeur propre et le reste du spectre de l'hamiltonien. Il peut ne pas être immédiatement compris à partir de cette formulation que le théorème adiabatique est, en fait, un concept extrêmement intuitif.
Processus adiabatiquevignette|250px|Récipient aux parois adiabatiques : le vase de Dewar. En thermodynamique, un processus adiabatique est une transformation effectuée sans qu'aucun transfert thermique n'intervienne entre le système étudié et son environnement, c'est-à-dire sans échange de chaleur entre les deux milieux. Le mot « adiabatique » a été construit à partir du grec (« infranchissable »), dérivé de , « traverser, franchir ». Un matériau adiabatique est imperméable à la chaleur.
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
Local-density approximationLocal-density approximations (LDA) are a class of approximations to the exchange–correlation (XC) energy functional in density functional theory (DFT) that depend solely upon the value of the electronic density at each point in space (and not, for example, derivatives of the density or the Kohn–Sham orbitals). Many approaches can yield local approximations to the XC energy. However, overwhelmingly successful local approximations are those that have been derived from the homogeneous electron gas (HEG) model.
Large extra dimensionsIn particle physics and string theory (M-theory), the ADD model, also known as the model with large extra dimensions (LED), is a model framework that attempts to solve the hierarchy problem. (Why is the force of gravity so weak compared to the electromagnetic force and the other fundamental forces?) The model tries to explain this problem by postulating that our universe, with its four dimensions (three spatial ones plus time), exists on a membrane in a higher dimensional space.