droite|vignette| Trajectoires dans l'espace des phases pour un pendule simple. L'axe X correspond à la position du pendule, et l'axe Y sa vitesse.
Dans la théorie des systèmes dynamiques, l'espace des phases (ou espace d'état) d'un système est l'espace mathématique dans lequel tous les états possibles du système sont représentés ; chaque état possible correspondant à un point unique dans l'espace des phases. Pour un système mécanique, l'espace des phases se compose généralement de toutes les valeurs possibles des variables de position et d'impulsion représentant le système. Pour une particule, l'espace des phases a 6 dimensions, les espaces des positions et des impulsions ayant chacun 3 dimensions.
Le concept d'espace des phases a été développé à la fin du XIXe siècle par Ludwig Boltzmann, Henri Poincaré et Josiah Willard Gibbs .
L'espace des phases d'un système est un espace multidimensionnel, dont chaque axe représente un degré de liberté du système. Chaque état possible du système ou combinaison autorisée de valeurs des paramètres du système, est représenté par un point dans l'espace multidimensionnel. L'évolution dans le temps de l'état du système trace un chemin (une trajectoire) dans l'espace multidimensionnel. Une trajectoire dans l'espace des phases d'un système représente l'ensemble des états du système compatibles avec une condition initiale particulière ; cette trajectoire se situe dans l'espace des phases complet qui représente l'ensemble des états compatibles avec n'importe quelle condition initiale.
Le diagramme de phase représente tous les états possibles du système (voir la figure ci-dessus pour le diagramme des phases du pendule simple) ; sa forme et sa structure sont représentatives des caractéristiques dynamiques du système, difficiles à être mises en évidence par ailleurs (notamment dans l'espace des positions ou dans l'espace des impulsions).
Un espace des phases peut contenir un grand nombre de dimensions. Par exemple, l'espace des phases d'un gaz monoatomique contenant N molécules aura 6N dimensions ; chaque molécule étant caractérisée par sa position et son impulsion .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours est une introduction à la physique stellaire. On y expose les notions indispensables à la compréhension du fonctionnement d'une étoile et à la construction de modèles de structure interne et
The course covers several exact, approximate, and numerical methods to solve the time-dependent molecular Schrödinger equation, and applications including calculations of molecular electronic spectra.
La mécanique hamiltonienne est une reformulation de la mécanique newtonienne. Son formalisme a facilité l'élaboration théorique de la mécanique quantique. Elle a été formulée par William Rowan Hamilton en 1833 à partir des équations de Lagrange, qui reformulaient déjà la mécanique classique en 1788. En mécanique lagrangienne, les équations du mouvement d'un système à N degrés de liberté dépendent des coordonnées généralisées et des vitesses correspondantes , où .
En mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
En mathématiques, une variété symplectique est une variété différentielle munie d'une forme différentielle de degré 2 fermée et non dégénérée, appelée forme symplectique. L'étude des variétés symplectiques relève de la géométrie symplectique. Les variétés symplectiques apparaissent dans les reformulations analytiques abstraites de la mécanique classique utilisant la notion de fibré cotangent d'une variété, notamment dans la reformulation hamiltonnienne, où les configurations d'un système forment une variété dont le fibré cotangent décrit l'espace des phases du système.
The multiflavor Mott insulators, whose local Hilbert space consists of multiple degrees of freedom, occur widely in both quantum materials and ultracold atom systems. This Comment recommends the review article by Chen and Wu that is, to the author's knowle ...
Berlin2024
, , ,
Dynamic aperture is an important concept for the study of non-linear beam dynamics in circular accelerators. It describes the extent of the phase-space region where a particle's motion remains bounded over a given number of turns. Understanding the feature ...
2024
, , ,
At room temperature, mechanical motion driven by the quantum backaction of light has been observed only in pioneering experiments in which an optical restoring force controls the oscillator stiffness1,2. For solid-state mechanical resonators in which oscil ...