Pion (particule)Un pion ou méson pi est une des trois particules : π, π+ ou π−. Ce sont les particules les plus légères de la famille des mésons. Elles jouent un rôle important dans l'explication des propriétés à basse énergie de la force nucléaire forte ; notamment, la cohésion du noyau atomique est assurée par l'échange de pions entre les nucléons (protons et neutrons). Le substantif masculin pion (prononcé en français standard) est composé de pi, transcription de la lettre grecque π, et de -on, tiré de électron.
Violation de CPEn physique des particules, la violation de CP est une violation de la symétrie CP, c'est-à-dire de la combinaison de la symétrie C (symétrie de conjugaison de charge) et de la symétrie P (symétrie de parité). La symétrie CP indique que les lois de la physique devraient être les mêmes si une particule est échangée avec son antiparticule (symétrie C) tandis que ses coordonnées spatiales sont inversées (symétrie P, ou « miroir »).
Radioactivité βLa radioactivité β, radioactivité bêta ou émission bêta (symbole β) est, à l'origine, un type de désintégration radioactive dans laquelle une particule bêta (un électron ou un positon) est émise. On parle de désintégration bêta moins (β) ou bêta plus (β) selon qu'il s'agit de l'émission d'un électron (particule chargée négativement) ou d'un positon (particule chargée positivement). L'émission β est notamment ce qui permet la conversion d'un neutron en proton, par exemple dans les cas de transmutation comme du tritium (T) qui se transforme en hélium 3 (He) : ⟶ + e + .
Asymétrie baryoniqueL'asymétrie baryonique réfère à l'excès de la matière baryonique sur l'antimatière baryonique dans l'univers observable. Bien que plusieurs hypothèses soient émises pour expliquer cet excès, dont la plupart concernent la baryogénèse, aucune d'elles ne fait consensus, et l'asymétrie baryonique demeure l'un des problèmes non résolus de la physique. La plupart des hypothèses formulées à propos de l'asymétrie baryonique impliquent la modification du modèle standard en physique des particules afin de permettre que certaines réactions (surtout celles impliquant l'interaction faible) puissent se réaliser plus facilement que leur contraire.
Particule de MajoranaEn physique des particules, une particule de Majorana ou fermion de Majorana est un fermion qui est sa propre antiparticule. Ces particules sont nommées en hommage au physicien Ettore Majorana, qui a proposé ce modèle en établissant l'équation qui porte son nom. Ce terme est parfois utilisé en opposition aux particules de Dirac (ou fermions de Dirac) qui ont une antiparticule différente d'elles-mêmes. En 1928, Paul Dirac publie l'article qui contient l'équation de Dirac.
Radioactivitévignette|Pictogramme signalant la présence de matière radioactive. (☢) vignette|La maison de Georges Cuvier, au Jardin des plantes de Paris, où Henri Becquerel découvrit la radioactivité en 1896. La radioactivité est le phénomène physique par lequel des noyaux atomiques instables (dits radionucléides ou radioisotopes) se transforment spontanément en d'autres atomes (désintégration) en émettant simultanément des particules de matière (électrons, noyaux d'hélium, neutrons) et de l'énergie (photons et énergie cinétique).
Désintégration du protonEn physique des particules, la désintégration du proton désigne un mode hypothétique de décroissance radioactive dans laquelle le proton se désintègre en des particules subatomiques plus légères, comme le pion neutre et le positron. Il n'existe actuellement aucune preuve expérimentale indiquant que la désintégration du proton se produise ; ce qui place la demi-vie théorique du proton à une valeur supérieure à 10 années. Dans le modèle standard, les protons (un type de baryon), sont théoriquement stables parce que le nombre baryonique est censé se conserver.
Rapport de branchementEn physique des particules et en physique nucléaire, le rapport de branchement (ou rapport d'embranchement) désigne la probabilité de voir un nucléide emprunter un mode de désintégration radioactive donné parmi tous les modes de désintégration qu'il est susceptible de connaître. La somme des rapports de branchement de tous les modes de désintégration d'un nucléide est donc par définition égale à 1 (soit 100 %).
Rayon gammavignette|Des rayons gamma sont produits par des processus nucléaires énergétiques au cœur des noyaux atomiques. Un rayon gamma (ou rayon γ) est un rayonnement électromagnétique à haute fréquence émis lors de la désexcitation d'un noyau atomique résultant d'une désintégration. Les photons émis sont caractérisés par des énergies allant de quelques keV à plusieurs centaines de GeV voire jusqu'à pour le plus énergétique jamais observé. Les rayons gamma furent découverts en 1900 par Paul Villard, chimiste français.
Baryogénèsevignette|upright=2|La baryogénèse se serait produite après l'inflation (en beige), mais bien avant la première seconde suivant le Big Bang. Elle se situerait dans les parties jaune-orange du schéma ci-dessus. En cosmologie, le terme baryogénèse désigne une ou des périodes de formation des baryons au sein de l'univers primordial. Ainsi, d'après la théorie du Big Bang, lors des premiers instants de l'Univers, ce dernier était trop chaud pour permettre l'existence de la matière.