Barrière hémato-encéphaliquethumb|Les astrocytes de type 1 entourant les capillaires sanguins au niveau du cerveau. La barrière hémato-encéphalique, ou hémo-encéphalique, ou hémato-méningée est une barrière physiologique présente dans le cerveau chez tous les tétrapodes (vertébrés terrestres), entre la circulation sanguine et le système nerveux central (SNC). Elle sert à réguler le milieu (homéostasie) dans le cerveau, en le séparant du sang. Les cellules endothéliales, qui sont reliées par des jonctions serrées et qui tapissent les capillaires du côté du flux sanguin, sont les composants essentiels de cette barrière.
Propriété de Markovvignette|Exemple de processus stochastique vérifiant la propriété de Markov: un mouvement Brownien (ici représenté en 3D) d'une particule dont la position à un instant t+1 ne dépend que de la position précédente à l'instant t. En probabilité, un processus stochastique vérifie la propriété de Markov si et seulement si la distribution conditionnelle de probabilité des états futurs, étant donnés les états passés et l'état présent, ne dépend en fait que de l'état présent et non pas des états passés (absence de « mémoire »).
Champ aléatoire de MarkovUn champ aléatoire de Markov est un ensemble de variables aléatoires vérifiant une propriété de Markov relativement à un graphe non orienté. C'est un modèle graphique. Soit un graphe non orienté et un ensemble de variables aléatoires indexé par les sommets de . On dit que est un champ aléatoire de Markov relativement à si une des trois propriétés suivantes est vérifiée c'est-à-dire que deux variables aléatoires dont les sommets associés ne sont pas voisins dans le graphe sont indépendantes conditionnellement à toutes les autres variables.
Chaîne de Markovvignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »).
Syndrome du cerveau scindéLe syndrome du cerveau scindé ou divisé ou callosum (en anglais split-brain) est un syndrome résultant de la déconnexion des deux hémisphères. La raison est l'absence de corps calleux à la naissance (malformation congénitale) ou la conséquence de sa destruction accidentelle ou chirurgicale. Le corps calleux relie les deux hémisphères du cerveau. L'association de symptômes est produite par la perturbation ou l'interférence de la connexion entre les hémisphères du cerveau.
Asymétrie cérébraleEn neurosciences cognitives, l'asymétrie cérébrale est l'inégale implication des deux hémisphères du cerveau dans les différentes fonctions mentales. Dans leur anatomie générale, les deux hémisphères sont très semblables mais il existe un certain nombre de caractéristiques plus fines qui les distinguent l'un de l'autre. Le lien entre ces différences structurelles et les différences fonctionnelles reste mal compris.
Transmission electron cryomicroscopyTransmission electron cryomicroscopy (CryoTEM), commonly known as cryo-EM, is a form of cryogenic electron microscopy, more specifically a type of transmission electron microscopy (TEM) where the sample is studied at cryogenic temperatures (generally liquid-nitrogen temperatures). Cryo-EM is gaining popularity in structural biology. The utility of transmission electron cryomicroscopy stems from the fact that it allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment.
Méthode de Monte-Carlo par chaînes de MarkovLes méthodes de Monte-Carlo par chaînes de Markov, ou méthodes MCMC pour Markov chain Monte Carlo en anglais, sont une classe de méthodes d'échantillonnage à partir de distributions de probabilité. Ces méthodes de Monte-Carlo se basent sur le parcours de chaînes de Markov qui ont pour lois stationnaires les distributions à échantillonner. Certaines méthodes utilisent des marches aléatoires sur les chaînes de Markov (algorithme de Metropolis-Hastings, échantillonnage de Gibbs), alors que d'autres algorithmes, plus complexes, introduisent des contraintes sur les parcours pour essayer d'accélérer la convergence (Monte Carlo Hybride, Surrelaxation successive).
Émission par effet de champL'émission par effet de champ, ou, sous forme abrégée, lʼémission de champ, est l'émission d'électrons induits par des champs électromagnétiques externes. Elle peut avoir lieu à partir d'une surface solide ou liquide, ou bien directement au niveau d'un atome en milieu gazeux. La théorie d'émission par effet de champ à partir des métaux a été décrite la première fois par Fowler et Nordheim en 1928. Le courant d'émission électronique se calcule au moyen de l'équation dite de Fowler-Nordheim : avec Canon à éle
Champ aléatoire conditionnelLes champs aléatoires conditionnels (conditional random fields ou CRFs) sont une classe de modèles statistiques utilisés en reconnaissance des formes et plus généralement en apprentissage statistique. Les CRFs permettent de prendre en compte l'interaction de variables « voisines ». Ils sont souvent utilisés pour des données séquentielles (langage naturel, séquences biologiques, vision par ordinateur). Les CRFs sont un exemple de réseau probabiliste non orienté.