Analyse de consommation (cryptographie)En cryptanalyse de matériel cryptographique, l'analyse de consommation (en anglais, differential power analysis ou DPA) est l'étude des courants et tensions entrants et sortants d'un circuit dans le but de découvrir des informations secrètes comme la clé de chiffrement. Certaines opérations, plus coûteuses, augmentent la consommation électrique du circuit, notamment par l'utilisation de plus de composants (analogiques ou logiques). Cette analyse des variations et des pics permet de tirer des informations précieuses pour le cryptanalyste.
Opération bit à bitEn logique, une opération bit à bit est un calcul manipulant les données directement au niveau des bits, selon une arithmétique booléenne. Elles sont utiles dès qu'il s'agit de manipuler les données à bas niveau : codages, couches basses du réseau (par exemple TCP/IP), cryptographie, où elles permettent également les opérations sur les corps finis de caractéristique 2. Les opérations bit à bit courantes comprennent des opérations logiques bit par bit et des opérations de décalage des bits, vers la droite ou vers la gauche.
Réseau de substitution-permutationvignette|Représentation d'un réseau de substitution-permutation en 3 rounds avec le texte en clair (noté PLAINTEXT), la clé de chiffrement (notée KEY) et le texte chiffré (noté CIPHERTEXT). En cryptographie, un réseau de permutation-substitution (SPN en anglais) est une architecture utilisée dans les chiffrements par bloc comme AES. Elle consiste en une série de transformations mathématiques sur le bloc en clair en entrée pour produire un bloc chiffré en sortie.
Round (cryptography)In cryptography, a round or round function is a basic transformation that is repeated (iterated) multiple times inside the algorithm. Splitting a large algorithmic function into rounds simplifies both implementation and cryptanalysis. For example, encryption using an oversimplified three-round cipher can be written as , where C is the ciphertext and P is the plaintext. Typically, rounds are implemented using the same function, parameterized by the round constant and, for block ciphers, the round key from the key schedule.
Arrondi (mathématiques)Arrondir un nombre consiste à le remplacer par un autre nombre considéré comme plus simple ou plus pertinent. Ce procédé s'appelle arrondissage ou arrondissement et le nombre obtenu est un arrondi. Le résultat est moins précis, mais plus facile à employer. Il y a plusieurs façons d'arrondir. En général, on arrondit un nombre en en donnant une valeur approchée obtenue à partir de son développement décimal en réduisant le nombre de chiffres significatifs. L'arrondi peut se faire au plus proche, par excès ou par défaut.
Hachage universelEn mathématiques et en informatique, le hachage universel, en anglais universal hashing, (dans un algorithme probabiliste ou un bloc de données) est une méthode qui consiste à sélectionner aléatoirement une fonction de hachage dans une famille de fonctions de hachages qui ont certaines propriétés mathématiques. Cela permet de minimiser la probabilité de collision de hachage. Plusieurs familles de fonctions de hachages sont connues (pour hacher des entiers, des chaînes de caractères ou des vecteurs), et leur calcul est souvent très efficace.
Partie entière et partie fractionnaireright|thumb|Représentation graphique en escalier de la fonction « partie entière ». En mathématiques et en informatique, la partie entière par défaut, ou partie entière inférieure, en général abrégée en partie entière tout court, d'un nombre réel est l'unique entier relatif (positif, négatif ou nul) tel que On démontre son existence et son unicité par analyse-synthèse : est le plus grand entier relatif inférieur ou égal à (ce que l'on peut prendre comme définition équivalente de la partie entière de , voir ci-dessous), son existence étant garantie par la propriété d'Archimède.
Circuit rankIn graph theory, a branch of mathematics, the circuit rank, cyclomatic number, cycle rank, or nullity of an undirected graph is the minimum number of edges that must be removed from the graph to break all its cycles, making it into a tree or forest. It is equal to the number of independent cycles in the graph (the size of a cycle basis). Unlike the corresponding feedback arc set problem for directed graphs, the circuit rank r is easily computed using the formula where m is the number of edges in the given graph, n is the number of vertices, and c is the number of connected components.
Graphe planaireDans la théorie des graphes, un graphe planaire est un graphe qui a la particularité de pouvoir se représenter sur un plan sans qu'aucune arête (ou arc pour un graphe orienté) n'en croise une autre. Autrement dit, ces graphes sont précisément ceux que l'on peut plonger dans le plan, ou encore les graphes dont le nombre de croisements est nul. Les méthodes associées à ces graphes permettent de résoudre des problèmes comme l'énigme des trois maisons et d'autres plus difficiles comme le théorème des quatre couleurs.
Ensemble dominantEn théorie des graphes, un ensemble dominant (ou dominating set en anglais) d'un graphe G = ( S, A ) est un sous-ensemble D de l'ensemble S des sommets tel que tout sommet qui n'appartient pas à D possède au moins une arête d'extrémité un sommet de D. Le problème de l'ensemble dominant est de déterminer, étant donné G et un entier naturel k, si G possède un ensemble dominant d'au plus k sommets. Ce problème est NP-complet.