NeigeLa neige () est une forme de précipitations atmosphériques constituée de particules de glace ramifiées, de structure et d'aspect très variables qui sont la plupart du temps cristallisées et agglomérées en flocons contenant de l'air. Mais cette glace peut aussi être sous forme de grains (neige en grains, neige roulée) ou mouillée. Lorsqu'il y a suffisamment de froid et d'humidité dans l'atmosphère, la neige se forme naturellement par condensation solide de la vapeur d'eau à saturation autour des noyaux de congélation.
PrécipitationsLes précipitations désignent toutes les formes de l'eau à l'état liquide ou solide provenant de l'atmosphère. Ces hydrométéores (cristaux de glace ou gouttelettes d'eau), ayant été soumis à des processus de condensation et d'agrégation à l'intérieur des nuages, sont devenus trop lourds pour demeurer en suspension dans l'atmosphère et tombent au sol ou s'évaporent en virga avant de l'atteindre. Les précipitations se caractérisent par trois principaux paramètres : leur volume, leur intensité et leur fréquence qui varient selon les lieux et les périodes (jours, mois ou années).
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Loi stableLa loi stable ou loi de Lévy tronquée, nommée d'après le mathématicien Paul Lévy, est une loi de probabilité utilisée en mathématiques, physique et analyse quantitative (finance de marché). On dit qu'une variable aléatoire réelle est de loi stable si elle vérifie l'une des 3 propriétés équivalentes suivantes : Pour tous réels strictement positifs et , il existe un réel strictement positif et un réel tels que les variables aléatoires et aient la même loi, où et sont des copies indépendantes de .
Théorie des probabilitésLa théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés par le hasard et l'incertitude. Elle forme avec la statistique les deux sciences du hasard qui sont partie intégrante des mathématiques. Les débuts de l'étude des probabilités correspondent aux premières observations du hasard dans les jeux ou dans les phénomènes climatiques par exemple. Bien que le calcul de probabilités sur des questions liées au hasard existe depuis longtemps, la formalisation mathématique n'est que récente.
Compound probability distributionIn probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables. If the parameter is a scale parameter, the resulting mixture is also called a scale mixture.
Loi inverse-gammaDans la Théorie des probabilités et en statistiques, la distribution inverse-gamma est une famille de lois de probabilité continues à deux paramètres sur la demi-droite des réels positifs. Il s'agit de l'inverse d'une variable aléatoire distribuée selon une distribution Gamma. La densité de probabilité de la loi inverse-gamma est définie sur le support par: où est un paramètre de forme et un paramètre d'intensité, c'est-à-dire l'inverse d'un paramètre d'échelle.
Fonction caractéristique (probabilités)En mathématiques et plus particulièrement en théorie des probabilités et en statistique, la fonction caractéristique d'une variable aléatoire réelle est une quantité qui détermine de façon unique sa loi de probabilité. Si cette variable aléatoire a une densité, alors la fonction caractéristique est la transformée de Fourier inverse de la densité. Les valeurs en zéro des dérivées successives de la fonction caractéristique permettent de calculer les moments de la variable aléatoire.
Hivervignette|Paysage d'un jour d'hiver enneigé au bois de la Cambre à Bruxelles, en 2017. vignette|Paysage d'un jour d'hiver enneigé à Neulingen (Bade-Wurtemberg, Allemagne). thumb|L'hiver en Finlande. Lhiver est l’une des quatre saisons de l’année dans les zones tempérées et polaires de la Terre. L'hiver suit l'automne et précède le printemps. Il existe plusieurs définitions de l'hiver : astronomique (saison comprenant les jours les plus courts de l'année), météorologique (saison comprenant les mois les plus froids de l'année), et calendaire (dont les dates varient selon les pays).
National Snow and Ice Data Centerdroite|150x150px Le National Snow and Ice Data Center, ou NSIDC, est un centre d'information et de référence des États-Unis à l'appui de la recherche polaire et cryosphérique. Le NSIDC est responsable des archives et de la distribution numérique et analogique des données sur la neige et la glace et maintient également des informations sur la couverture de neige, les avalanches, les glaciers, les calottes glaciaires, la glace d'eau douce, la glace de mer, la glace terrestre, le pergélisol, la glace atmosphérique, la paléoglaciologie, et les carottes de glace.