Polynôme de JacobiEn mathématiques, les polynômes de Jacobi sont une classe de polynômes orthogonaux. Ils sont obtenus à partir des séries hypergéométriques dans les cas où la série est en fait finie : où est le symbole de Pochhammer pour la factorielle croissante, (Abramowitz & Stegun p561.) et ainsi, nous avons l'expression explicite pour laquelle la valeur finale est Ici, pour l'entier et est la fonction gamma usuelle, qui possède la propriété pour .
Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Floating-point error mitigationFloating-point error mitigation is the minimization of errors caused by the fact that real numbers cannot, in general, be accurately represented in a fixed space. By definition, floating-point error cannot be eliminated, and, at best, can only be managed. Huberto M. Sierra noted in his 1956 patent "Floating Decimal Point Arithmetic Control Means for Calculator": Thus under some conditions, the major portion of the significant data digits may lie beyond the capacity of the registers.
Point fixeEn mathématiques, pour une application f d'un ensemble E dans lui-même, un élément x de E est un point fixe de f si f(x) = x. Exemples : dans le plan, la symétrie par rapport à un point A admet un unique point fixe : A ; l'application inverse (définie sur l'ensemble des réels non nuls) admet deux points fixes : –1 et 1, solutions de l'équation équivalente à l'équation . Graphiquement, les points fixes d'une fonction f (d'une variable réelle, à valeurs réelles) sont les points d'intersection de la droite d'équation y = x avec la courbe d'équation y = f(x).
Quadruple-precision floating-point formatIn computing, quadruple precision (or quad precision) is a binary floating point–based computer number format that occupies 16 bytes (128 bits) with precision at least twice the 53-bit double precision. This 128-bit quadruple precision is designed not only for applications requiring results in higher than double precision, but also, as a primary function, to allow the computation of double precision results more reliably and accurately by minimising overflow and round-off errors in intermediate calculations and scratch variables.
Outilthumb|Une boîte à outils en bois des années 1950. Un outil est un objet physique utilisé par un être vivant directement, ou par l'intermédiaire d'une machine, afin d'exercer une action le plus souvent mécanique, ou thermique, sur un élément d'environnement à traiter (matière brute, objet fini ou semi-fini, être vivant, etc). Il améliore l'efficacité des actions entreprises ou donne accès à des actions impossibles autrement. Beaucoup procurent un avantage mécanique en fonctionnant selon le principe d'une machine simple, comme la pince-monseigneur, qui exploite le principe du levier.
Fixed-point iterationIn numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.
Programmation impérativeEn informatique, la programmation impérative est un paradigme de programmation qui décrit les opérations en séquences d'instructions exécutées par l'ordinateur pour modifier l'état du programme. Ce type de programmation est le plus répandu parmi l'ensemble des langages de programmation existants, et se différencie de la programmation déclarative (dont la programmation logique ou encore la programmation fonctionnelle sont des sous-ensembles).
Mise en œuvreLa mise en œuvre est le fait de mettre en place un projet. En ingénierie et plus particulièrement en informatique, la mise en œuvre désigne la création d’un produit fini à partir d’un document de conception, d’un document de spécification, voire directement depuis une version originelle ou un cahier des charges. L’utilisation de l’anglicisme « implémentation », de l'anglais to implement, est courante (et acceptée).
Théorème du point fixe de Kakutanivignette|Exemple animé montrant des points x, et leurs images φ(x) par la fonction φ. L'animation finit par montrer un point x contenu dans φ(x). En analyse mathématique, le théorème du point fixe de Kakutani est un théorème de point fixe qui généralise celui de Brouwer à des fonctions à valeurs ensemblistes. Il fournit une condition suffisante pour qu'une telle fonction, définie sur un compact convexe d'un espace euclidien, possède un point fixe, c'est-à-dire dans ce contexte : un point qui appartient à son par cette fonction.