Protéines intrinsèquement désordonnéesLes protéines intrinsèquement désordonnées ou intrinsèquement non structurées sont des protéines qui manquent de structure tridimensionnelle stable, ce qui leur confère une forte plasticité qui est à l'origine de leur importance dans les phénomènes biologiques. Une protéine peut être totalement désordonnée, mais le cas le plus courant est celui où seulement une partie de la molécule, plus ou moins longue, est désordonnée (exemple : ).
Structure des protéinesLa structure des protéines est la composition en acides aminés et la conformation en trois dimensions des protéines. Elle décrit la position relative des différents atomes qui composent une protéine donnée. Les protéines sont des macromolécules de la cellule, dont elles constituent la « boîte à outils », lui permettant de digérer sa nourriture, produire son énergie, de fabriquer ses constituants, de se déplacer, etc. Elles se composent d'un enchaînement linéaire d'acides aminés liés par des liaisons peptidiques.
Protéineredresse=1.36|vignette|Représentation d'une protéine, ici deux sous-unités d'une molécule d'hémoglobine. On observe les représentées en couleur, ainsi que deux des quatre molécules d'hème, qui sont les groupes prosthétiques caractéristiques de cette protéine. redresse=1.36|vignette|Liaison peptidique –CO–NH– au sein d'un polypeptide. Le motif constitue le squelette de la protéine, tandis que les groupes liés aux sont les chaînes latérales des résidus d'acides aminés.
Folding funnelThe folding funnel hypothesis is a specific version of the energy landscape theory of protein folding, which assumes that a protein's native state corresponds to its free energy minimum under the solution conditions usually encountered in cells. Although energy landscapes may be "rough", with many non-native local minima in which partially folded proteins can become trapped, the folding funnel hypothesis assumes that the native state is a deep free energy minimum with steep walls, corresponding to a single well-defined tertiary structure.
Protéine globulaireLes protéines globulaires ou sphéroprotéines constituent l'une des trois principales classes de protéines à côté des protéines fibreuses et des protéines membranaires. vignette|Structure de l'hémoglobine, une protéine globulaire de la famille des globines Elles ont un rapport axial inférieur à 10, ce sont donc des sphéroïdes. Elles sont solubles dans l'eau grâce à leurs nombreux groupements hydroxyles pouvant lier leur H avec l'O de l'eau en formant une liaison hydrogène.
Spectroscopie RMNvignette|redresse|Spectromètre RMN avec passeur automatique d'échantillons utilisé en chimie organique pour la détermination des structures chimiques. vignette|redresse|Animation présentant le principe de la Résonance Magnétique Nucléaire (RMN). La spectroscopie RMN est une technique qui exploite les propriétés magnétiques de certains noyaux atomiques. Elle est basée sur le phénomène de résonance magnétique nucléaire (RMN), utilisé également en sous le nom d’.
Champ de force (chimie)vignette|Un champ de force peut par exemple être utilisé afin de minimiser l'énergie d'étirement de cette molécule d'éthane. Dans le cadre de la mécanique moléculaire, un champ de force est un ensemble de potentiels et de paramètres permettant de décrire la structure de l'énergie potentielle d'un système de particules (typiquement, des atomes, mais non exclusivement). L'usage de l'expression champ de force en chimie et biologie numériques diffère ainsi de celui de la physique, où il indique en général un gradient négatif d'un potentiel scalaire.
Protein designProtein design is the rational design of new protein molecules to design novel activity, behavior, or purpose, and to advance basic understanding of protein function. Proteins can be designed from scratch (de novo design) or by making calculated variants of a known protein structure and its sequence (termed protein redesign). Rational protein design approaches make protein-sequence predictions that will fold to specific structures.
Chimie numériqueLa chimie numérique ou chimie informatique, parfois aussi chimie computationnelle, est une branche de la chimie et de la physico-chimie qui utilise les lois de la chimie théorique exploitées dans des programmes informatiques spécifiques afin de calculer structures et propriétés d'objets chimiques tels que les molécules, les solides, les agrégats atomiques (ou clusters), les surfaces, etc., en appliquant autant que possible ces programmes à des problèmes chimiques réels.
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).