Principal homogeneous spaceIn mathematics, a principal homogeneous space, or torsor, for a group G is a homogeneous space X for G in which the stabilizer subgroup of every point is trivial. Equivalently, a principal homogeneous space for a group G is a non-empty set X on which G acts freely and transitively (meaning that, for any x, y in X, there exists a unique g in G such that x·g = y, where · denotes the (right) action of G on X).
K-théorieEn mathématiques, la K-théorie est un outil utilisé dans plusieurs disciplines. En topologie algébrique, la sert de théorie de cohomologie. Une variante est utilisée en algèbre sous le nom de K-théorie algébrique. Les premiers résultats de la K-théorie ont été dans le cadre de la topologie algébrique, comme une théorie de cohomologie extraordinaire (elle ne vérifie pas l'axiome de dimension). Par la suite, ces méthodes ont été utilisées dans beaucoup d'autres domaines comme la géométrie algébrique, l'algèbre, la théorie des nombres, la théorie des opérateurs, etc.
Stack (mathematics)In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis.
Cartan connectionIn the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the geometry of the principal bundle is tied to the geometry of the base manifold using a solder form. Cartan connections describe the geometry of manifolds modelled on homogeneous spaces. The theory of Cartan connections was developed by Élie Cartan, as part of (and a way of formulating) his method of moving frames (repère mobile).
Michael AtiyahSir Michael Francis Atiyah, né le à Londres et mort le , est un mathématicien anglais d'origine libanaise, fils de l'écrivain Edward Atiyah. Il est professeur à l'université d'Oxford, à l'université de Cambridge et à l'université de Princeton. Membre de la Royal Society depuis 1962, il en est président de 1990 à 1995. Il est lauréat de la médaille Fields 1966, du prix Abel 2004 et de la grande médaille 2010.
Fibré en droitesEn mathématiques, un fibré en droites est une construction qui décrit une droite attachée en chaque point d'un espace. Par exemple, une courbe dans le plan possède une tangente en chaque point, et si la courbe est suffisamment lisse alors la tangente évolue de manière « continue » lorsqu'on se déplace sur la courbe. De manière plus formelle on peut définir un fibré en droites comme un fibré vectoriel de rang 1.
Connexion affineEn mathématiques, et plus précisément en géométrie différentielle, une connexion affine est un objet géométrique défini sur une variété différentielle, qui connecte des espaces tangents voisins, et permet ainsi à des champs de vecteurs tangents d'être dérivés comme si c'étaient des fonctions définies sur la variété et prenant leurs valeurs dans un unique espace vectoriel.
Variété hyperboliquethumb|Une projection en perspective d'un pavage dodécahédrique dans H3. C'est un exemple de ce qu'un observateur pourrait observer à l'intérieur d'une 3-variété hyperbolique thumb|La pseudosphère : chaque moitié de cette forme est une surface hyperbolique à bord. En mathématiques, une variété hyperbolique est un espace dans lequel chaque point apparaît localement comme d'une certaine dimension. Ces variétés sont spécifiquement étudiées en dimensions 2 et 3, où elles sont appelées respectivement surfaces de Riemann et .
Théorie de l'homotopieLa théorie de l'homotopie est une branche des mathématiques issue de la topologie algébrique dans laquelle les espaces et applications sont considérés à homotopie près. La notion topologique de déformation est étendue à des contextes algébriques notamment via les structures de complexe différentiel puis d’algèbre A. Étant donné deux équivalences d’homotopie f : X′ → X et g : Y → Y′, l’ensemble des classes d'homotopie des applications continues entre X et Y s’identifie à celui des applications entre X′ et Y′ par composition avec f et g.
Vector-valued differential formIn mathematics, a vector-valued differential form on a manifold M is a differential form on M with values in a vector space V. More generally, it is a differential form with values in some vector bundle E over M. Ordinary differential forms can be viewed as R-valued differential forms. An important case of vector-valued differential forms are Lie algebra-valued forms. (A connection form is an example of such a form.) Let M be a smooth manifold and E → M be a smooth vector bundle over M.