Fibré des repèresEn géométrie différentielle, un fibré des repères est un certain type de fibré principal qui correspond à un fibré vectoriel sur une variété différentielle. Les points du fibré des repères sont les repères linéaires des fibres du fibré vectoriel correspondant. L'exemple le plus commun de fibré des repères est le fibré des repères tangents correspondant au fibré tangent d'une variété différentielle.
Closed manifoldIn mathematics, a closed manifold is a manifold without boundary that is compact. In comparison, an open manifold is a manifold without boundary that has only non-compact components. The only connected one-dimensional example is a circle. The sphere, torus, and the Klein bottle are all closed two-dimensional manifolds. The real projective space RPn is a closed n-dimensional manifold. The complex projective space CPn is a closed 2n-dimensional manifold. A line is not closed because it is not compact.
Variété topologiqueEn topologie, une variété topologique est un espace topologique, éventuellement séparé, assimilable localement à un espace euclidien. Les variétés topologiques constituent une classe importante des espaces topologiques, avec des applications à tous les domaines des mathématiques. Le terme variété peut désigner une variété topologique, ou, le plus souvent, une variété topologique munie d'une autre structure. Par exemple, une variété différentielle est une variété topologique munie d'une structure permettant le calcul différentiel.
Homologie des groupesEn algèbre homologique, l'homologie d'un groupe est un invariant attaché à ce groupe. Pour un groupe G, on note Z[G] l'algèbre du groupe G sur l'anneau des entiers relatifs Z. Soient alors M un Z[G]-module (ce qui revient à se donner un groupe abélien M et un morphisme de G dans le groupe des automorphismes de M), et une résolution projective de M. Les groupes d'homologie de G à coefficients dans M sont définis par : De façon duale les groupes de cohomologie de G à coefficients dans M sont définis par : où est une résolution injective de M.
Equivariant cohomologyIn mathematics, equivariant cohomology (or Borel cohomology) is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space with action of a topological group is defined as the ordinary cohomology ring with coefficient ring of the homotopy quotient : If is the trivial group, this is the ordinary cohomology ring of , whereas if is contractible, it reduces to the cohomology ring of the classifying space (that is, the group cohomology of when G is finite.
Espace homogèneEn géométrie, un espace homogène est un espace sur lequel un groupe agit de façon transitive. Dans l'optique du programme d'Erlangen, le groupe représente des symétries préservant la géométrie de l'espace, et le caractère homogène se manifeste par l'indiscernabilité des points, et exprime une notion disotropie. Les éléments de l'espace forment une seule orbite selon G. Les espaces des géométries classiques (en dimension finie quelconque) de points sont des espaces homogènes pour leur groupe de symétries.
3-variétéEn mathématiques, une 3-variété est une variété de dimension 3, au sens des variétés topologiques, ou différentielles (en dimension 3, ces catégories sont équivalentes). Certains phénomènes sont liés spécifiquement à la dimension 3, si bien qu'en cette dimension, des techniques particulières prévalent, qui ne se généralisent pas aux dimensions supérieures.
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Connexion d'EhresmannEn géométrie différentielle, une connexion d'Ehresmann (d'après le mathématicien français Charles Ehresmann qui a le premier formalisé ce concept) est une version de la notion de connexion qui est définie sur des fibrés. En particulier, elle peut être non-linéaire, puisqu'un espace fibré n'a pas de notion de linéarité qui lui soit naturellement adaptée. Cependant, une connexion de Koszul (parfois aussi appelée connexion linéaire) en est un cas particulier.
Pullback bundleIn mathematics, a pullback bundle or induced bundle is the fiber bundle that is induced by a map of its base-space. Given a fiber bundle π : E → B and a continuous map f : B′ → B one can define a "pullback" of E by f as a bundle fE over B′. The fiber of fE over a point b′ in B′ is just the fiber of E over f(b′). Thus f*E is the disjoint union of all these fibers equipped with a suitable topology. Let π : E → B be a fiber bundle with abstract fiber F and let f : B′ → B be a continuous map.