Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Numerical methods for linear least squaresNumerical methods for linear least squares entails the numerical analysis of linear least squares problems. A general approach to the least squares problem can be described as follows. Suppose that we can find an n by m matrix S such that XS is an orthogonal projection onto the image of X. Then a solution to our minimization problem is given by simply because is exactly a sought for orthogonal projection of onto an image of X (see the picture below and note that as explained in the next section the image of X is just a subspace generated by column vectors of X).
Modèle de Hubbardvignette|Modèle de Hubbard à deux dimensions. Le modèle de Hubbard est un modèle étudié en théorie de la matière condensée. Il décrit des fermions (généralement des électrons) sur un réseau (en général les atomes qui forment un solide), qui interagissent uniquement lorsqu'ils se trouvent sur le même site (c'est-à-dire sur le même atome). Ce modèle a été introduit en 1963 à peu près simultanément par , Martin C. Gutzwiller et Junjiro Kanamori. Il est parfois appelé modèle de Hubbard-Gutzwiller-Kanamori pour cette raison.
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Spin–lattice relaxationDuring nuclear magnetic resonance observations, spin–lattice relaxation is the mechanism by which the longitudinal component of the total nuclear magnetic moment vector (parallel to the constant magnetic field) exponentially relaxes from a higher energy, non-equilibrium state to thermodynamic equilibrium with its surroundings (the "lattice"). It is characterized by the spin–lattice relaxation time, a time constant known as T1.
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Verre de spinvignette|Représentation schématique d'une structure aléatoire d'un verre de spins (haut) et d'un état ferromagnétique (bas). Les verres de spin sont des alliages métalliques comportant un petit nombre d'impuretés magnétiques disposées au hasard dans l'alliage. À chaque impureté est associée un spin. Le couplage entre ces différents spins peut être plus ou moins intense - attractif ou répulsif - en fonction de la distance qui les sépare.
Alignement (géométrie)vignette|Sur cette figure, les points a1,a2,a3 sont alignés, ainsi que les points b1,b2,b3. En revanche, les points a1,a2,b3 ne sont pas alignés. En géométrie, l’alignement est une propriété satisfaite par certains familles de points, lorsque ces derniers appartiennent collectivement à une même droite. Deux points étant toujours alignés en vertu du premier axiome d’Euclide, la notion d’alignement ne présente d’intérêt qu’à partir d’une collection de trois points.
Spin quantum numberIn physics, the spin quantum number is a quantum number (designated s) that describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. It has the same value for all particles of the same type, such as s = 1/2 for all electrons. It is an integer for all bosons, such as photons, and a half-odd-integer for all fermions, such as electrons and protons. The component of the spin along a specified axis is given by the spin magnetic quantum number, conventionally written ms.