Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We formulate and derive a generalization of an orthogonal rational-function basis for spectral expansions over the infinite or semi-infinite interval. The original functions, first presented by Wiener, are a mapping and weighting of the Fourier basis to the infinite interval. By identifying the Fourier series as a biorthogonal composition of Jacobi polynomials/functions, we are able to define generalized Fourier series which, when appropriately mapped to the whole real line and weighted, generalize Wiener's basis functions. It is known that the original Wiener rational functions inherit sparse Galerkin matrices for differentiation, and can utilize the fast Fourier transform (FFT) for computation of the expansion coefficients. We show that the generalized basis sets also have a sparse differentiation matrix and we discuss connection problems, which are necessary theoretical developments for application of the FFT.
Till Junge, Ali Falsafi, Martin Ladecký
Martin Alois Rohrmeier, Johannes Hentschel, Gabriele Cecchetti, Sabrina Laneve, Ludovica Schaerf
Laurent Villard, Stephan Brunner, Alberto Bottino, Moahan Murugappan