Process Design and Optimization (MLS-S03): Model Identification by Gradient Methods
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In light of the challenges posed by climate change and the goals of the Paris Agreement, electricity generation is shifting to a more renewable and decentralized pattern, while the operation of systems like buildings is increasingly electrified. This calls ...
Driven by the need for more efficient and seamless integration of physical models and data, physics -informed neural networks (PINNs) have seen a surge of interest in recent years. However, ensuring the reliability of their convergence and accuracy remains ...
In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
In this paper, we propose a reduced-order modeling strategy for two-way Dirichlet-Neumann parametric coupled problems solved with domain-decomposition (DD) sub-structuring methods. We split the original coupled differential problem into two sub-problems wi ...
We describe a novel method to compute the components of dynamo tensors from direct magnetohydrodynamic (MHD) simulations. Our method relies upon an extension and generalization of the standard H & ouml;gbom CLEAN algorithm widely used in radio astronomy to ...
With the significant increase in photovoltaic (PV) electricity generation, more attention has been given to PV power forecasting. Indeed, accurate forecasting allows power grid operators to better schedule and dispatch their assets, such as energy storage ...
Molecular quantum dynamics simulations are essential for understanding many fundamental phenomena in physics and chemistry. They often require solving the time-dependent Schrödinger equation for molecular nuclei, which is challenging even for medium-sized ...
Herein, machine learning (ML) models using multiple linear regression (MLR), support vector regression (SVR), random forest (RF) and artificial neural network (ANN) are developed and compared to predict the output features viz. specific capacitance (Csp), ...
DEMO will have a limited diagnostic set for optimization of reactor performance, and limited diagnostic coverage due to challenging reactor conditions. This poses challenges for control, especially for detachment control which is planned to be performed wi ...
Diffusion-based generative methods have proven effective in modeling trajectories with offline datasets. However, they often face computational challenges and can falter in generalization, especially in capturing temporal abstractions for long- horizon tas ...