Causalitévignette|Exemple classique de la chute d'un domino causé par la chute d'un autre. En science, en philosophie et dans le langage courant, la causalité désigne la relation de cause à effet. la cause, corrélat de l'effet, c'est . C'est ce qui produit l'effet ; la causalité est le . Autrement dit, la causalité est l'influence par laquelle un événement, un processus, un état ou un objet (une cause) contribue à la production d'un autre événement, processus, état ou objet (un effet) considéré comme sa conséquence.
Inférence causaleL'inférence causale est le processus par lequel on peut établir une relation de causalité entre un élément et ses effets. C'est un champ de recherche à la croisée des statistiques, de l'économétrie, de l'épidémiologie, de la méthodologie politique et de l'intelligence artificielle. En 1920, Sewall Wright développe la première path analysis. Cette analyse graphique des relations de causalité entre les variables constitue selon Judea Pearl un travail pionnier dans l'inférence causale.
Causal reasoningCausal reasoning is the process of identifying causality: the relationship between a cause and its effect. The study of causality extends from ancient philosophy to contemporary neuropsychology; assumptions about the nature of causality may be shown to be functions of a previous event preceding a later one. The first known protoscientific study of cause and effect occurred in Aristotle's Physics. Causal inference is an example of causal reasoning. Causal relationships may be understood as a transfer of force.
Causal modelIn the philosophy of science, a causal model (or structural causal model) is a conceptual model that describes the causal mechanisms of a system. Several types of causal notation may be used in the development of a causal model. Causal models can improve study designs by providing clear rules for deciding which independent variables need to be included/controlled for. They can allow some questions to be answered from existing observational data without the need for an interventional study such as a randomized controlled trial.
Causalité au sens de GrangerLa causalité a été introduite dans l'analyse économétrique par Wiener (1956) et Granger (1969). À l'origine, on retrouve la formalisation de la notion de causalité en physique, notamment dans les travaux d'Isaac Newton sur la force motrice (cause) et le changement de mouvement (effet). Dans ce cas, la notion de causalité traduit un principe d’après lequel si un phénomène est la cause d’un autre phénomène, nommé « effet », alors ce dernier ne peut pas précéder la cause.
Modèle causal de Neyman-RubinLe modèle causal de Neyman-Rubin (ou modèle à résultats potentiels, en anglais potential outcome model) est un cadre de pensée permettant d'identifier statistiquement l'effet causal d'une variable sur une autre. La première version du modèle a été proposée par Jerzy Neyman en 1923 dans son mémoire de maîtrise. Le modèle a ensuite été généralisé par Donald Rubin dans un article intitulé « ». Le nom du modèle a été donné par Paul Holland dans un article de 1986 intitulé « ». Expérience naturelle Méthode des
Diagramme de boucle causalevignette|308x308px|Exemple de boucle de rétroaction de renforcement : solde bancaire (bank balance) et intérêts perçus (earned interest) Un diagramme de boucle causale (DBC) est un diagramme qui permet de visualiser comment les différentes variables dans un système sont interdépendantes. Le diagramme se compose d'un ensemble de nœuds et d'arcs. Les nœuds représentent les variables et les arcs les connexions, ou liens de causalités, entre les variables.
Corrélation (statistiques)En probabilités et en statistique, la corrélation entre plusieurs variables aléatoires ou statistiques est une notion de liaison qui contredit leur indépendance. Cette corrélation est très souvent réduite à la corrélation linéaire entre variables quantitatives, c’est-à-dire l’ajustement d’une variable par rapport à l’autre par une relation affine obtenue par régression linéaire. Pour cela, on calcule un coefficient de corrélation linéaire, quotient de leur covariance par le produit de leurs écarts types.
Mouvement (mécanique)Un mouvement, dans le domaine de la mécanique (physique), est le déplacement d'un corps par rapport à un point fixe de l'espace nommé référentiel et à un moment déterminé. Le mouvement est plus spécifiquement l'objet de la cinématique et de la dynamique. On caractérise un mouvement par sa trajectoire et l'évolution de sa vitesse par exemple : le mouvement circulaire uniforme : mouvement d'un point ou de tous les points matériels qui décrit un cercle avec une vitesse constante.
Modèle du solide indéformableLe modèle du solide indéformable est un modèle de solide fréquemment utilisé en mécanique des systèmes de points matériels. Il s'agit d'une idéalisation de la notion usuelle de corps (à l'état) solide, considéré comme absolument rigide, et négligeant toute déformation. Le solide indéformable est un modèle utilisé en mécanique pour décrire le comportement d'un corps (objet, pièce). Comme son nom l'indique, on considère qu'au cours du temps la distance entre deux points donnés ne varie pas.