Probabilistic Lexical Modeling and Unsupervised Training for Zero-Resourced ASR
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Standard automatic speech recognition (ASR) systems use phonemes as subword units. Thus, one of the primary resource required to build a good ASR system is a well developed phoneme pronunciation lexicon. However, under-resourced languages typically lack su ...
A Language Model (LM) is a helpful component of a variety of Natural Language Processing (NLP) systems today. For speech recognition, machine translation, information retrieval, word sense disambiguation etc., the contribution of an LM is to provide featur ...
In this work, we propose different strategies for efficiently integrating an automated speech recognition module in the framework of a dialogue-based vocal system. The aim is the study of different ways leading to the improvement of the quality and robustn ...
The EMIME project aims to build a personalized speech-to-speech translator, such that spoken input of a user in one language is used to produce spoken output that still sounds like the user's voice however in another language. This distinctiveness makes un ...
The use of local phoneme posterior probabilities has been increasingly explored for improving speech recognition systems. Hybrid hidden Markov model / artificial neural network (HMM/ANN) and Tandem are the most successful examples of such systems. In this ...
Domain adaptation of a language model aims at re-estimating word sequence probabilities in order to better match the peculiarities of a given broad topic of interest. To achieve this task, a common strategy consists in retrieving adaptation texts from the ...
The EMIME project aims to build a personalized speech-to-speech translator, such that spoken input of a user in one language is used to produce spoken output that still sounds like the user's voice however in another language. This distinctiveness makes un ...
The use of local phoneme posterior probabilities has been increasingly explored for improving speech recognition systems. Hybrid hidden Markov model / artificial neural network (HMM/ANN) and Tandem are the most successful examples of such systems. In this ...
Domain adaptation of a language model aims at re-estimating word sequence probabilities in order to better match the peculiarities of a given broad topic of interest. To achieve this task, a common strategy consists in retrieving adaptation texts from the ...
The thesis work was motivated by the goal of developing personalized speech-to-speech translation and focused on one of its key component techniques – cross-lingual speaker adaptation for text-to-speech synthesis. A personalized speech-to-speech translator ...