Chiffre significatifLe nombre de chiffres significatifs indique la précision d'une mesure physique. Il s'agit des chiffres connus avec certitude ou compris dans un intervalle d'incertitude. La précision (ou l'incertitude) avec laquelle on connaît la valeur d'une grandeur dépend du mesurage (ensemble d'opérations ayant pour but de déterminer la valeur d'une grandeur). Exemple : a cinq chiffres significatifs. Le premier chiffre incertain est le 5.
Classification en classes multiplesIn machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). While many classification algorithms (notably multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies.
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Semi-proportional representationSemi-proportional representation characterizes multi-winner electoral systems which allow representation of minorities, but are not intended to reflect the strength of the competing political forces in close proportion to the votes they receive. Semi-proportional voting systems can be regarded as compromises between forms of proportional representation such as party-list PR, and plurality/majoritarian systems such as first-past-the-post voting. Examples of semi-proportional systems include the single non-transferable vote, limited voting, and parallel voting.
Erreur d'arrondiUne erreur d'arrondi est la différence entre la valeur approchée calculée d'un nombre et sa valeur mathématique exacte. Des erreurs d'arrondi naissent généralement lorsque des nombres exacts sont représentés dans un système incapable de les exprimer exactement. Les erreurs d'arrondi se propagent au cours des calculs avec des valeurs approchées ce qui peut augmenter l'erreur du résultat final. Dans le système décimal des erreurs d'arrondi sont engendrées, lorsqu'avec une troncature, un grand nombre (peut-être une infinité) de décimales ne sont pas prises en considération.
Loi de PoissonEn théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Compound Poisson distributionIn probability theory, a compound Poisson distribution is the probability distribution of the sum of a number of independent identically-distributed random variables, where the number of terms to be added is itself a Poisson-distributed variable. The result can be either a continuous or a discrete distribution. Suppose that i.e., N is a random variable whose distribution is a Poisson distribution with expected value λ, and that are identically distributed random variables that are mutually independent and also independent of N.
Science de l'informationLa science de l'information (ou les sciences de l'information) est un champ disciplinaire ayant pour objet scientifique l'information, lequel est principalement concerné par l'analyse, la collecte, la classification, la manipulation, le stockage, la récupération, la circulation, la diffusion et la protection de l'information. Les praticiens, qu'ils travaillent ou non sur le terrain, étudient l'application et l'utilisation des connaissances dans les organisations, ainsi que l'interaction entre les personnes, les organisations et tout système d'information existant, dans le but de créer, remplacer, améliorer ou comprendre les systèmes d'information.
StatistiqueLa statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous. C'est à la fois une branche des mathématiques appliquées, une méthode et un ensemble de techniques. ce qui permet de différencier ses applications mathématiques avec une statistique (avec une minuscule). Le pluriel est également souvent utilisé pour la désigner : « les statistiques ».
Base de données spatialesUne base de données spatiales est une base de données optimisée pour stocker et interroger des données reliées à des objets référencés géographiquement, y compris des points, les lignes et des polygones. Alors que les bases de données classiques peuvent comprendre différents types de données numériques et caractères, des fonctions additionnelles ont besoin d'être ajoutées pour traiter les types de données spatiales. Celles-ci sont typiquement appelées géométrie ou caractère.