Effet Barkhausenvignette|Sauts de Barkhausen au cours d'une magnétisation. vignette|Déformation d'une paroi de Bloch au contact d'un défaut cristallin. On appelle effet Barkhausen (ou sauts de Barkhausen, bruit de Barkhausen) la variation discontinue de magnétisation des corps ferromagnétiques sous l’effet d’une fluctuation du champ magnétique. Si l’on place un corps ferromagnétique dans un champ magnétique et que l’on augmente lentement l’excitation, la magnétisation n’augmente pas continûment, mais par sauts progressifs, les « sauts de Barkhausen » : c’est ce qu’a mis en évidence pour la première fois de façon acoustique Heinrich Barkhausen en 1917.
Condition aux limites de RobinEn mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855-1897), qui a travaillé dans le domaine de la thermodynamique. Elle est également appelée condition aux limites de Fourier. Imposée à une équation différentielle ordinaire ou à une équation aux dérivées partielles, il s'agit d'une relation linéaire entre les valeurs de la fonction et les valeurs de la dérivée de la fonction sur le bord du domaine.
Condition aux limites de DirichletEn mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Condition aux limites de NeumannEn mathématiques, une condition aux limites de Neumann (nommée d'après Carl Neumann) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs des dérivées que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Neumann sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Problème aux limitesEn analyse, un problème aux limites est constitué d'une équation différentielle (ou plus généralement aux dérivées partielles) dont on recherche une solution prenant de plus des valeurs imposées en des limites du domaine de résolution. Contrairement au problème analogue dit de Cauchy, où une ou plusieurs conditions en un même endroit sont imposées (typiquement la valeur de la solution et de ses dérivées successives en un point), auquel le théorème de Cauchy-Lipschitz apporte une réponse générale, les problèmes aux limites sont souvent des problèmes difficiles, et dont la résolution peut à chaque fois conduire à des considérations différentes.
FerrofluideLes ferrofluides sont des suspensions colloïdales de nanoparticules ferromagnétiques ou ferrimagnétiques d'une taille de l'ordre de dans un solvant ou de l'eau. Ces liquides deviennent magnétiques lors de l'application d'un champ magnétique extérieur tout en conservant leur stabilité colloïdale. Une conséquence spectaculaire de cette propriété est que ces liquides sont attirés par les aimants ou les électroaimants, exactement comme un morceau de fer.
Magnétorésistance géanteLa magnétorésistance géante (en anglais, Giant Magnetoresistance Effect ou GMR) est un effet quantique observé dans les structures de films minces composées d'une alternance de couches ferromagnétiques et de couches non magnétiques communément appelées multicouches. Elle se manifeste sous forme d'une baisse significative de la résistance observée sous l'application d'un champ magnétique externe. Dans la découverte initiale, les deux couches ferromagnétiques adjacentes ont en l'absence de champ magnétique appliqué une aimantation antiparallèle qui résulte d'un couplage antiferromagnétique.
Cauchy boundary conditionIn mathematics, a Cauchy (koʃi) boundary condition augments an ordinary differential equation or a partial differential equation with conditions that the solution must satisfy on the boundary; ideally so as to ensure that a unique solution exists. A Cauchy boundary condition specifies both the function value and normal derivative on the boundary of the domain. This corresponds to imposing both a Dirichlet and a Neumann boundary condition. It is named after the prolific 19th-century French mathematical analyst Augustin-Louis Cauchy.
Condition aux limites mêléeEn mathématiques, une condition aux limites mêlée ou mixte correspond à la juxtaposition de différentes conditions aux limites sur différentes parties du bord (ou frontière) du domaine dans lequel est posée une équation aux dérivées partielles ou une équation différentielle ordinaire. Par exemple, si l'on considère les vibrations d'une corde élastique de longueur L se déplaçant à une vitesse c dont une extrémité (en 0) est fixe, et l'autre (en L) est attachée à un anneau oscillant librement le long d'une tige droite, on a alors une équation sur un intervalle [0,L].
SpinLe 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).