Canal binaire symétriqueAlice veut transmettre un message à Bob. Un canal binaire symétrique est un canal discret où Alice transmet une suite d’éléments de l'ensemble et où la probabilité d'erreur dans la transmission d'un symbole est de , pour 0 et pour 1 (d'où la symétrie). Ce canal est sans mémoire, c'est-à-dire qu'aucune archive des messages n'est conservée. En communication, un problème classique est d'envoyer de l'information d'une source à une destination via un canal de communication, en présence de bruit.
Problème de Monty Hallvignette|Les données de base du problème de Monty Hall :soient trois portes, cachant soit une chèvre soit une superbe voiture, l'automobile étant derrière une seule porte et les deux chèvres étant derrière les deux autres portes restantes. Le problème de Monty Hall est une énigme mathématique, librement inspiré du jeu télévisé américain Let's Make a Deal. Il porte le nom de celui qui a présenté ce jeu aux États-Unis pendant treize ans, Monty Hall.
Diviser pour régner (informatique)thumb|652x652px|Trois étapes (diviser, régner, combiner) illustrées avec l'algorithme du tri fusion En informatique, diviser pour régner (du latin , divide and conquer en anglais) est une technique algorithmique consistant à : Diviser : découper un problème initial en sous-problèmes ; Régner : résoudre les sous-problèmes (récursivement ou directement s'ils sont assez petits) ; Combiner : calculer une solution au problème initial à partir des solutions des sous-problèmes.
Algorithme de multiplication d'entiersLes algorithmes de multiplication permettent de calculer le résultat d'une multiplication. Graphiquement, il s'agit de transformer un rectangle multiplicateur × multiplicande en une ligne, en conservant le nombre d'éléments. Ce type de multiplication n'utilise que des additions et des multiplications ou des divisions par 2. Elle ne nécessite pas de connaître de table de multiplication (autre que la multiplication par 2).
Classification naïve bayésiennevignette|Exemple de classification naïve bayésienne pour un ensemble de données dont le nombre augmente avec le temps. La classification naïve bayésienne est un type de classification bayésienne probabiliste simple basée sur le théorème de Bayes avec une forte indépendance (dite naïve) des hypothèses. Elle met en œuvre un classifieur bayésien naïf, ou classifieur naïf de Bayes, appartenant à la famille des classifieurs linéaires. Un terme plus approprié pour le modèle probabiliste sous-jacent pourrait être « modèle à caractéristiques statistiquement indépendantes ».