Summary statisticsIn descriptive statistics, summary statistics are used to summarize a set of observations, in order to communicate the largest amount of information as simply as possible. Statisticians commonly try to describe the observations in a measure of location, or central tendency, such as the arithmetic mean a measure of statistical dispersion like the standard mean absolute deviation a measure of the shape of the distribution like skewness or kurtosis if more than one variable is measured, a measure of statistical dependence such as a correlation coefficient A common collection of order statistics used as summary statistics are the five-number summary, sometimes extended to a seven-number summary, and the associated box plot.
Statistique bayésienneLa statistique bayésienne est une approche statistique fondée sur l'inférence bayésienne, où la probabilité exprime un degré de croyance en un événement. Le degré initial de croyance peut être basé sur des connaissances a priori, telles que les résultats d'expériences antérieures, ou sur des croyances personnelles concernant l'événement. La perspective bayésienne diffère d'un certain nombre d'autres interprétations de la probabilité, comme l'interprétation fréquentiste qui considère la probabilité comme la limite de la fréquence relative d'un événement après de nombreux essais.
Puce à ADNthumb|upright=1.2|Principe d'utilisation de la puce à ADN. Une puce à ADN est un ensemble de molécules d'ADN fixées en rangées ordonnées sur une petite surface qui peut être du verre, du silicium ou du plastique. Cette biotechnologie récente permet d'analyser le niveau d'expression des gènes (transcrits) dans une cellule, un tissu, un organe, un organisme ou encore un mélange complexe, à un moment donné et dans un état donné par rapport à un échantillon de référence.
Probabilité a prioriDans le théorème de Bayes, la probabilité a priori (ou prior) désigne une probabilité se fondant sur des données ou connaissances antérieures à une observation. Elle s'oppose à la probabilité a posteriori (ou posterior) correspondante qui s'appuie sur les connaissances postérieures à cette observation. Le théorème de Bayes s'énonce de la manière suivante : si . désigne ici la probabilité a priori de , tandis que désigne la probabilité a posteriori, c'est-à-dire la probabilité conditionnelle de sachant .
Five-number summaryThe five-number summary is a set of descriptive statistics that provides information about a dataset. It consists of the five most important sample percentiles: the sample minimum (smallest observation) the lower quartile or first quartile the median (the middle value) the upper quartile or third quartile the sample maximum (largest observation) In addition to the median of a single set of data there are two related statistics called the upper and lower quartiles.
Jeffreys priorIn Bayesian probability, the Jeffreys prior, named after Sir Harold Jeffreys, is a non-informative prior distribution for a parameter space; its density function is proportional to the square root of the determinant of the Fisher information matrix: It has the key feature that it is invariant under a change of coordinates for the parameter vector . That is, the relative probability assigned to a volume of a probability space using a Jeffreys prior will be the same regardless of the parameterization used to define the Jeffreys prior.
Seven-number summaryIn descriptive statistics, the seven-number summary is a collection of seven summary statistics, and is an extension of the five-number summary. There are three similar, common forms. As with the five-number summary, it can be represented by a modified box plot, adding hatch-marks on the "whiskers" for two of the additional numbers. The following percentiles are (approximately) evenly spaced under a normally distributed variable: the 2nd percentile (better: 2.15%) the 9th percentile (better: 8.
Statistique descriptiveLa statistique descriptive est la branche des statistiques qui regroupe les nombreuses techniques utilisées pour décrire un ensemble relativement important de données. L'objectif de la statistique descriptive est de décrire, c'est-à-dire de résumer ou représenter, par des statistiques, les données disponibles quand elles sont nombreuses. Toute description d'un phénomène nécessite d'observer ou de connaître certaines choses sur ce phénomène. Les observations disponibles sont toujours constituées d'ensemble d'observations synchrones.
Méta-analyseUne méta-analyse est une méthode scientifique systématique combinant les résultats d'une série d'études indépendantes sur un problème donné, selon un protocole reproductible. Plus spécifiquement, il s'agit d'une synthèse statistique des études incluses dans une revue systématique. La méta-analyse permet une analyse plus précise des données par l'augmentation du nombre de cas étudiés et de tirer une conclusion globale. La méta-analyse fait partie des méthodes d'analyse dites secondaires en ce sens qu'elles s'appuient sur la ré-exploitation de données existantes.
Gene expression profilingIn the field of molecular biology, gene expression profiling is the measurement of the activity (the expression) of thousands of genes at once, to create a global picture of cellular function. These profiles can, for example, distinguish between cells that are actively dividing, or show how the cells react to a particular treatment. Many experiments of this sort measure an entire genome simultaneously, that is, every gene present in a particular cell. Several transcriptomics technologies can be used to generate the necessary data to analyse.