NP (complexité)La classe NP est une classe très importante de la théorie de la complexité. L'abréviation NP signifie « non déterministe polynomial » (« en »). Un problème de décision est dans NP s'il est décidé par une machine de Turing non déterministe en temps polynomial par rapport à la taille de l'entrée. Intuitivement, cela revient à dire qu'on peut vérifier « rapidement » (complexité polynomiale) si une solution candidate est bien solution.
Théorie de la complexité (informatique théorique)vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.
Coloration fractionnairedroite|vignette| 5: 2-coloration du graphe dodécaédrique. Il n'existe pas de 4: 2-coloration de ce graphe. En théorie des graphes, la coloration fractionnaire est une généralisation de la coloration des graphes ordinaire. Dans une coloration de graphe traditionnelle, une couleur est affectée à chaque sommet d'un graphe, et deux sommets adjacents ne doivent pas avoir la même couleur. Dans une coloration fractionnaire, un ensemble de couleurs est affecté à chaque sommet du graphe.
Complexité paramétréeEn algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
Graphe de KneserEn théorie des graphes, les graphes de Kneser forment une famille infinie de graphes. Le graphe de Kneser KGn,k est un graphe simple dont les sommets correspondent aux sous-ensembles à k éléments d'un ensemble à n éléments. Deux sommets sont reliés s'ils correspondent à des sous-ensembles disjoints. Son ordre est donc égal , le nombre de combinaison de k parmi n, et il est régulier de degré . En 1955, le mathématicien Martin Kneser se pose la question suivante : Kneser conjecture que ce n'est pas possible et le publie sous forme d'un exercice.
Produit tensoriel (graphe)Le produit tensoriel est une opération sur deux graphes et résultant en un graphe . Il est également appelé produit direct, produit de Kronecker ou produit catégorique. Soient deux graphes et . Le produit tensoriel est défini comme suit : l'ensemble de ses sommets est le produit cartésien ; et sont adjacents dans si et seulement si et sont adjacents dans et et sont adjacents dans . Autrement dit, deux sommets sont voisins si les sommets dont ils sont issus étaient voisins dans les deux graphes.
Complexité en espaceEn algorithmique, la complexité en espace est une mesure de l'espace utilisé par un algorithme, en fonction de propriétés de ses entrées. L'espace compte le nombre maximum de cases mémoire utilisées simultanément pendant un calcul. Par exemple le nombre de symboles qu'il faut conserver pour pouvoir continuer le calcul. Usuellement l'espace que l'on prend en compte lorsque l'on parle de l'espace nécessaire pour des entrées ayant des propriétés données est l'espace nécessaire le plus grand parmi ces entrées ; on parle de complexité en espace dans le pire cas.
Graphe de CayleyEn mathématiques, un graphe de Cayley (du nom d'Arthur Cayley) est un graphe qui encode la structure d'un groupe. C'est un outil important pour l'étude de la combinatoire et de la géométrie des groupes. Étant donné un groupe et une partie génératrice de ce groupe, le graphe de Cayley Cay(G,S) est construit comme suit : À chaque élément de , on associe un sommet . À chaque élément de , on associe une couleur . Pour tout et , on trace une arête orientée de couleur du sommet vers le sommet .
Complexité de KolmogorovEn informatique théorique et en mathématiques, plus précisément en théorie de l'information, la complexité de Kolmogorov, ou complexité aléatoire, ou complexité algorithmique d'un objet — nombre, , chaîne de caractères — est la taille du plus petit algorithme (dans un certain langage de programmation fixé) qui engendre cet objet. Elle est nommée d'après le mathématicien Andreï Kolmogorov, qui publia sur le sujet dès 1963. Elle est aussi parfois nommée complexité de Kolmogorov-Solomonoff.
Complexité en moyenne des algorithmesLa complexité en moyenne d'un algorithme est la quantité d'une ressource donnée, typiquement le temps, utilisée par l'algorithme lors de son exécution pour traiter une entrée tirée selon une distribution donnée. Il s'agit par conséquent d'une moyenne de la complexité, pondérée entre les différentes entrées possibles selon la distribution choisie. Le plus souvent, on ne précise pas la distribution et on utilise implicitement une distribution uniforme (i.e.