Modèle mixteUn modèle mixte est un modèle statistique qui comporte à la fois des effets fixes et des effets aléatoires. Ce type de modèle est utile dans une grande variété de domaines, tels que la physique, la biologie ou encore les sciences sociales. Les modèles mixtes sont particulièrement utiles dans les situations où des mesures répétées sont effectuées sur les mêmes variables (étude longitudinale). Ils sont souvent préférés à d'autres approches telle que rANOVA, dans la mesure où ils peuvent être utilisés dans le cas où le jeu de données présente des valeurs manquantes.
Random effects modelIn statistics, a random effects model, also called a variance components model, is a statistical model where the model parameters are random variables. It is a kind of hierarchical linear model, which assumes that the data being analysed are drawn from a hierarchy of different populations whose differences relate to that hierarchy. A random effects model is a special case of a mixed model.
Discrete choiceIn economics, discrete choice models, or qualitative choice models, describe, explain, and predict choices between two or more discrete alternatives, such as entering or not entering the labor market, or choosing between modes of transport. Such choices contrast with standard consumption models in which the quantity of each good consumed is assumed to be a continuous variable. In the continuous case, calculus methods (e.g. first-order conditions) can be used to determine the optimum amount chosen, and demand can be modeled empirically using regression analysis.
Variable latenteIn statistics, latent variables (from Latin: present participle of lateo, “lie hidden”) are variables that can only be inferred indirectly through a mathematical model from other observable variables that can be directly observed or measured. Such latent variable models are used in many disciplines, including political science, demography, engineering, medicine, ecology, physics, machine learning/artificial intelligence, bioinformatics, chemometrics, natural language processing, management, psychology and the social sciences.
Homogeneity and heterogeneityHomogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image. A homogeneous feature is uniform in composition or character (i.e. color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous is distinctly nonuniform in at least one of these qualities.
Modèle d'équations structurellesLa modélisation d'équations structurelles ou la modélisation par équations structurelles ou encore la modélisation par équations structurales (en anglais structural equation modeling ou SEM) désignent un ensemble diversifié de modèles mathématiques, algorithmes informatiques et méthodes statistiques qui font correspondre un réseau de concepts à des données. On parle alors de modèles par équations structurales, ou de modèles en équations structurales ou encore de modèles d’équations structurelles.
Component Object ModelComponent Object Model (abr. COM) est une technique de composants logiciels développée par Microsoft et DEC, depuis 1994, populaire sur Windows et également disponible sur les systèmes d'exploitation OpenVMS, Tru64 ainsi que d'autres Unix. Utilisée pour mettre en œuvre OLE et ActiveX, COM est dépassé depuis 2009 par le Framework .NET de Microsoft. Les technologies COM regroupent OLE, COM+, Distributed COM et ActiveX.
Allocation de Dirichlet latenteDans le domaine du traitement automatique des langues, l’allocation de Dirichlet latente (de l’anglais Latent Dirichlet Allocation) ou LDA est un modèle génératif probabiliste permettant d’expliquer des ensembles d’observations, par le moyen de groupes non observés, eux-mêmes définis par des similarités de données. Par exemple, si les observations () sont les mots collectés dans un ensemble de documents textuels (), le modèle LDA suppose que chaque document () est un mélange () d’un petit nombre de sujets ou thèmes ( topics), et que la génération de chaque occurrence d’un mot () est attribuable (probabilité) à l’un des thèmes () du document.
Multilevel modelMultilevel models (also known as hierarchical linear models, linear mixed-effect model, mixed models, nested data models, random coefficient, random-effects models, random parameter models, or split-plot designs) are statistical models of parameters that vary at more than one level. An example could be a model of student performance that contains measures for individual students as well as measures for classrooms within which the students are grouped.
Théorie du choix rationnelLa théorie du choix rationnel (en anglais « rational choice theory », prononcé 'ræʃənl tʃɔɪs thēərē), ou « décision rationnelle », en microéconomie contemporaine, regroupe plusieurs théories de l'action qui, de manière générale, attribuent aux agents un comportement rationnel, lequel, en raison de préférences, dénote une recherche du plus grand profit pour le moindre mal. Elles ont été développées en économie (où elles constituent un paradigme dominant), en sociologie (où elles sont en concurrence avec d'autres paradigmes) et en psychologie, notamment en criminologie.